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ABSTRACT

The purpose of this study is to investigate both theoretically and
experimentally the saturation characteristics of beam-plasma devices. The
gain, power output, efficiency and the magnitude of the higher harmonic
components that pertain to such devices are of particular interest.

The geometry treated in this study consists of a cylindrical plasma
column which serves as a slow-wave circult along which electromagnetic
energy can propagate. A cylindrical electron stream is assumed to be
concentric with the plasma column. Amplification of an RF signal takes
place when a fraction of the kinetic energy of the stream electrons is
converted into RF wave energy.

The plasma is assumed to remain linear during the interaction process
so that it is possible to derive an equivalent circuit for which the various
elements are given in terms of the plasma parameters. Beam and plasma
collisions are included in the analysis and give rise to lossy elements in
the equivalent circuit. The electron stream 1s shown to become nonlinear
much more easily than the plasma so that 1t is Jjustifiable to treat only
the stream in a nonlinear fashion. A Lagrangian (ballistic) analysis is
used to calculate the trajectories of the various charge groups into which
the electron stream is subdivided. One- as well as two-dimensional stream
models are used. A digital computer is employed to calculate both the
charge group trajectories and the RF currents and circuit voltages of the
fundamental signal and its harmonics generated by the nonlinear operation.
Intermodulation and cross-modulation effects in multisignal operation are
8ls0o studied.

An experimental test vehicle is described which permits correlation
of the theoretically calculated results with those obtainable from an
actual beam-plasma interaction. A xenon plasma column 10.5 cm long is
generated by either a hot cathode Penning discharge or by ionization due to
the beam electrons passing through the xenon gas. Values of electronic gain
as high as 35 dB in the vicinity of 2.0 GHz are obtained experimentally by
the latter scheme. Harmonic components through the fifth are observed with
the second harmonic being only 5 dB below the fundamental under certain
conditions. When collision effects are taken into account in the theoretical
calculations, it 1s shown that the agreement with the experimentally observed
values is quite good for the cases that can be compared.

Coupling of RF energy into and out of the beam-plasma device is
considered in detall theoretically and experimentally. Short sections of
a slow-wave structure outside of the plasma region are used in the device
under test for mach of the experimental work. Another coupling scheme
making use of quasi-optical techniques is a set of elliptic cavity couplers.
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These are found to yleld a coupling loss of only 10 to 15 dB per coupler
over a frequency range of slightly greater than 20 percent in the low
S-band frequency region. This coupling approach i1s much less lossy than
most other methods employed previously. Efforts to use these couplers
for RF amplification measurements are shown to be unsuccessful due to
cathode poisoning at the higher gas pressures required.
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CHAPTER I. TINTRODUCTION

1.1 Historical Survey and Critique

1.1.1 General Description of Plasmas and Beam-Plasma Interactions.

If the temperature of a gas is raised to a sufficiently high value, the
thermal agitation of the gas particles may be so large that electrons are
stripped off by the collisions among the particles. The dynamical behavior
of the gas may then become dominated by the long-range electromagnetic
forces acting on the free ions and electrons. The behavior of such a fluid
differs sufficiently from that of an ordinary gas to warrant the intro-

" A plasma is thus an assembly of

duction of & new name, the 'plasma.’
charged particles with additional characteristics to be described more
fully in the following paragraphs.

The electric and magnetic fields of such an assembly of charged
particles may add together in a coherent way, provided the density of the
charged particles is sufficiently great so that space-charge effects
dominate. This is a very general proviso and does not necessarily depend
upon the degree of ionization of the assembly of charged particles or its
neutrality. As an example, it is well known that an unneutralized
electron beam behaves in many respects like a plasma. Ordinarily, when
one speaks of a plasma, however, gross charge neutrality is assumed to
exist. The tendency toward quasi-neutrality is very strong because the
forces on the individual particles are always in a direction to reduce

the space-charge density. Thus a more limited definition of a plasma

includes quasi-neutrality.
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Statistically speaking, a shielding cloud forms around each
ionized particle in the plasma so as to cancel out the electric potential
of that particle at a sufficiently large distance from it. This distance
is known as the Debye length, a concept developed in the study of

electrolytes by P. Debye, and is given by

where T is the temperature in °K characterizing the motion of the
particles, n is the particle density in particles/ms, g is the charge of
the particles, k is Boltzmann's constant, 1.380°10 22 J/°K, and €, is the
permittivity of free space, 8.854.1071% F/m. Thus the Debye length is a
fundamental parameter in plasma physics because any collectlion of charged
particles can be called a plasma only if 1ts dimensions are much larger
than a Debye length.

The discussion above is sensible only if there are many charged

particles in a Debye sphere. This implies that

L
ND=3-1t%.§n >> 1, (1.2)

where ND is the number of particles in a Debye sphere. In highly lonized

gases, which are of interest in this discussion, Eq. 1.2 is always satis-

fied. Taking the spacing between the ionized particles to be L = n_l/s,
then the average potential energy is given by
2 2 1/3
N o~ Q R W ¢
<PE> = HﬁEOL - Mﬁeo ’ (1.3)
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while the mean kinetic energy is kT. From Egs. 1.1 through 1.5 one

obtains

<KE> ~ kT = iy n2/3 KS (1,4)

<PE> q® nl/s/hﬁeo

and so for a plasma,

KE>
Se o= e o (1.5)

It appears reasonable that if an ionized gas is not to recombine, the
kinetic energy should be greater than the potential energy.

Plasma physics became a recognizable field of study with the work
of Tonks and Langmuir,l who observed oscillations in a plasma of electrons
and positive ions. These authors neglected the thermal velocities of the
electrons and described the oscillations observed as displacements of
groups of electrons with respect to a background of positive ions. They
established the well known relationship for these characteristic

oscillations or "plasma oscillations" as

(DZ = 'I;l?— 3 ] (l-6>

where ab is the freguency of oscillation in rad/s, n is the electron
density in electrons/ma, e and m are the charge and mass, respectively,
of the electron, and <, is the permittivity of free space.

The modern theory of plasma oscillations had its real beginning

2-4 yho discussed electron

around 1950 with the work of Bohm and Gross,
oscillations associated with the presence of electrostatic potential waves

in a plasma. These authors considered the effects of random thermal

motion, colligions, boundaries of their plasma model, and the presence of
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electron beams. A prediction of the Bohm and Gross theory was that an
electron beam sent through a homogeneous plasma should excite plasma
oscillations. The experimental results of Merrill and Webb® described

in 1939 and also those of Looney and Brown,6 the latter appearing to be

in disagreement with the Bohm and Gross theory, in fact substantiate the
theory of Bohm and Gross. The apparent paradox between the Looney and
Brown results and the Bohm and Gross theory was resolved by Sturrock,7

who was among the first to work out a systematic procedure of interpreting
dispersion laws for plasma models such as those analyzed by Bohm and
Gross.

1.1.2 Wave Propagation Through Plasmas. In an elementary plasma

model the small disturbances, which always oscillate at the plasma
frequency, do not propagate away from their point of origin. Since the
convection current of the electrons is exactly cancelled by the displace-
ment current, there is no magnetic field associated with the oscillatory
motion; hence the disturbances remain localized. If the plasma electrons
have a finite temperature, however, these disturbances do propagate away
from their point of origin with a velocity comparable to their thermal
speed.

If the disturbance has a fixed wavelength initially, then the
energy assoclated with this disturbance can diffuse into other wavelengths
by a process of collisionless damping, generally known as Landau damping.8
Physically this damping process is due to the fact that there is a
decreasing number of particles in higher velocity classes. Hence there
are slightly more particles traveling more slowly compared with the
original disturbance than there are particles traveling faster, resulting

in a decrease of the amplitude of the original disturbance.
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The electromagnetic waves that can propagate in an ionized medium
are frequently studied by choosing a simple zero-temperature plasma
model. The response to an oscillating RF field is accounted for in terms

of an equivalent charge-free frequency-dependent permittivity, €, given by

€ = eo(l - aé/a?) (1.7)

for a homogeneous, isotropic plasma, where w is the radian RF frequency.
This equivalent permlttivity i1s employed in the usual way in the solution
of the Maxwell field equations. When the plasma is immersed in a magnetic
field, the permittivity becomes both anisotropic and frequency-dependent,
so that it is then a tensor quantity. Solving Maxwell's equations, a
dispersion equation may be found which shows that electromagnetic waves

do not propagate in an ilonized gas below the plasma frequency and that

the plasma has little effect on the waves at frequencies much higher than
the plasma frequency.

Many models of analysis assume that the collision frequency is
negligible compared with the RF wave frequency so that an electron can

"oscillate many cycles before it makes a collision. In those models where
this assumption is not valid, the effects of collisions on the damping
of the waves can be taken into account by assuming the frequency to be
complex and replacing o by w(w-jv), where v is the radian collision
frequency.

The propagation characteristics have been worked out in
considerable detail for many such models. Regarding the plasma as a
dielectric and solving the resulting field equations, Trivelpiece and
Gould® found that slow waves propagating on a plasma of finite transverse

dimensions can exist even in the absence of a drift motion or thermal
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velocities. Their use of the quasistatic assumption was justified because
their model did not include fast waves. Beve and Everhart'® and Bevel?
considered wave propagation in plasma-filled waveguides without this
restriction and also considered transverse magnetic waves. Cyclotron
waves, which are due to the cyclotron frequency resonance (or gyro-
resonance), were also included in their analyses. It is at the cyclotron

radian frequency, W, that the electrons spiral about the magnetic field

lines. TFor electrons

B , (1.8)

where e/m is the charge-to-mass ratioc of the electron and B is the
magnetic field strength in Wb/mz. It should be noted that the gyro-
resonance for ions is much lower in frequency than for electrons, due to
the much higher mass of the ions. Consequently, the ion cyclotron waves
will be of little interest in the present study.

In a plasma column not bounded by a good conductor, surface waves
of an incompressible nature can propagate in addition to the space-~charge

©,12-14 pave a finite

or body waves discussed so far. These surface waves
electric field along the axis of a cylindrical model. The electric

field increases radially to the plasma edge and then discontinuously falls
to zero at the conducting wall. In these respects the surface wave 1is
similar to the wave propagating along a slow-wave structure in a
traveling-wave amplifier. Surface waves on a plasma column in free space
and in the absence of a magnetic field propagate at velocities less than
the velocity of light and have a passband14 extending from w = 0 to

w = wp/vg; The resonance frequency is at w = wp/NG; When the medium
outside the plasma column is a homogeneous isotropic dielectric with

dielectric constant €, the resonance frequency is at
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eV

w = "“‘——E"-’_ . .
m; (1.9)

If a magnetic field is present, two surface wave resonances occur. For
the case of the plasma column in free space with ab >> W,o One resonance

isatw = ab/"JE, as before. The second one occurs at
1
o = No_ o , (1.10)

which is the electron-ion hybrid resonance, where Ooe and w,; are the
electron and ion cyclotron frequencies in rad/s, respectively.

1.1.5 Harmonic Generation in Plasmas. One of the early appli-

cations of a plasma discharge was in the generation of harmonics.

Margenau and Hartman'®

considered this aspect theoretically for electrons
in a gas with a sinusoidal electric field applied. One of the first
experimental investigations of this problem was carried out by Inada

et al.,16 who applied microwave power in the order of 25 watts at a
frequency near 3.0 GHz to a low-Q cavity containing the plasma. The
power levels generated were 24, 29 and 34 dB below the input power at

the second, third and fourth harmonics, respectively.

If an electromagnetic wave is impressed on a uniform plasma in
the absence of any de electric field and a constant (independent of
particle velocity) electron collision freguency is assumed, then there
is no harmonic generation. It was found, however, that if the effects
of the electromagnetic wave modulation of the collision frequency,
resulting in a velocity dependent collision frequency, are included,

then harmonic generation may be realized.*”»*® Krenz'” showed that the

third harmonic current, for example, resulting from a velocity dependent
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collision frequency depends upon the various moments of the static,
isotropic part of the electron velocity distribution function. This
effect may be expected to be small compared to nonlinear phenomena, of
which a particular type will be considered below, because of the
resistive nature of the collisions present.

1.1.4 Description of Electron Beam-Plasma Systems. In a

conventional microwave interaction device making use of an electron beam
it is necessary to pass the beam close to some form of a metallic slow-
wave circuit or a resonant structure in order to convert a fraction of
the energy in the electron beam into RF energy. A schematic diagram of
a particular form of such a system is shown in Fig. 1.1. The physical
dimensions of the interaction structure must be comparable to a free-
space wavelength, if the interaction is to be efficient. Thus the size
of the electron beam, and hence the current that can be carried, is
limited. 1In a beam-plasma system the RF interaction structure is
replaced by a plasma, through which the beam is allowed to pass.
Consequently, the beam and the plasma are intimately mixed and the RF
fields do not vary appreciably over the cross-sectional area of the beam.
This relieves the restriction on the beam diameter, and at the same
time the size restrictions on a metallic structure in the vicinity of
the electron_beam‘may be greatly alleviated. These characteristics
make the beam-plasma interaction attractive at high power levels and at
very high frequencies, such as millimeter wavelengths.

Except perhaps for some very idealized and simple systems it is
impossible to predict by intuition what type of interactlons can take

place in a beam-plasma system. On the other hand, a detailed solution
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of the boundary value problem describing the system frequently becomes
complicated and tedious. In some cases the only information required
is whether or not an RF signal applied to a plasma device will grow or
decrease in amplitude or whether inherent instabilities may be expected.
For that purpose some methods have been developed which reveal this
information through an examination of the dispersion egquation, which is
an algebraic equation in the radian frequency, w, and the propagation
constant, k. Both w and k are complex guantities in general and it is

common practice to assume that the system wave function has a time and

j(am—kz). Sturrock'st®

spatial dependence of the form e approach
differentiates between evanescent and propagating waves on the one hand
and growing waves or instabilities on the other. Instabilities, again,

may be divided into two classes: convective or amplifying and nonconvective
or absolute. Buneman,zo too, was able to separate amplifying from

evanescent modes for certain physical systems with specified boundary

conditions at the ends.

1 22

The procedures described by Briggs2 and Sudan®™® are slightly
different, although equivalent, methods of analyzing a dispersion relation
in order to determine the type of instability in a plasma. In both cases,
if the dispersion equation yields real values of w for real values of k
and real values of k for real values of w, one concludes that the waves
are purely propagating and no instability exists. In Briggs's method,

a double root of k separating to different halves of the complex k-plane,
as the imaginary part of w approaches -«,indicates an absolute instability.

If a real value of w yields & complex value of k and the imaginary part of

k changes its sign as the imaginary part of @ approaches -, then the
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instability is convective. If the change in sign does not occur, the
wave 1s evanescent.

In Sudan's method it is necessary to examine the causality or
noncausality of the roots of the dispersion equation. Causality of
the roots is necessary for instabilities or evanescent waves to exist.

If distinect branch points of k exist, at least one of which must be in
the lower half of the w-plane, then there is a nonconvective instability.
If there are no branch points, but the real part of -jk is greater than
zero with the imaginary part of w equal to zero, then a convective
instability exists.

The plasma necessary in a beam-plasms device may be produced by
any one of a large variety of discharges, by contact ionization, or by
the electron beam itself. Getty and Sm11in®=® have looked at the beam-
generated plasma in detail. The electron beam, when turned on, lonized
the background gas and after a few microseconds the excited plasma
electrons became the dominant ionization source. In their experiment a
nonconvective instability initiated RF oscillations, which first appeared
at the electron cyclotron frequency. Then a convective instability at
the plasma frequency generated the oscillations that sustained the

25 g1s0 studied beam-

discharge. Targ and Levine,24 as well as Hedvall,
generated plasmas and reported on their characteristics, such as plasma
density, pressure ranges and the frequency regions of the observed
oscillations. In fact, electron beam excitation is employed exclusively

in many beam-plasma systems and partially in many others in order to

generate the plasma.
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It is usually impossible to design an experiment on a beam-plasma
system in which the plasma is everywhere homogeneous. In a cylindrical

geometry, for example, there are usually density variations in the radial

5 o .
12,26,27 28 Jerived a

as well as the axial directions. Chorney and Madore
typical plasma density profile for a cylindrical geometry and noted the
agreement with experimental devices to be quite good. They found that in
the axial direction there was a sinusoidal variation of density, with the
density dropping to zero at the metal end walls. In the radial direction
the plasma extended by ambipolar diffusion into those regions where there
was no ionization, with the density again dropping to zero at the
conducting cylinder walls. Nonuniformities in the plasma density make
theoretical analyses of realistic laboratory devices considerably more

difficult, but, as will be seen below, these inhomogeneities may have

beneficial effects on the coupling of RF energy to the beam-plasma system.

1.2 Theory of Beam-Plasma Interactions

1.2.1 Linear Beam-Plasma Theories. If an electron beam is intro-

duced into a plasma, an interactlon may take place between the beam and
the plasma, as has already been mentioned. Combining the terminology of
plasma physics with that of the microwave tube field, the beam-plasma
device is an amplifier if a convective instability exists, while it is

an oscillator if a nonconvective instability exists. Boyd et al.=®
conducted the first conclusive experiments demonstrating microwave ampli-
fication when an electron beam is passed through an arc discharge plasma.
They showed that amplification occurred at frequencies below the plasma
frequency, fp’ reached a peak at fp and extended to slightly higher

frequencies depending upon collisions and velocity distributions of the
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electrons in the beam and the plasma. Shortly thereafter Bogdanov et al.%°
reported on similar work in which amplifications of 20-40 dB in the 1-10

GHz range were observed. Berezin et al.31,%2

measured the energy loss
of the electron beam as it gave up part of its kinetic energy to the
high frequency wave, ylelding the efficiency of the energy exchange
process. The strength of the high frequency fields was also measured.

A great many researchers in this country and abroad have considered
the beam-plasma interaction both theoretically and experimentally. The
work to be reviewed in the following few paragraphs thus can be only a
representative sample of what has been done. In a series of papers
Vlaardingerbroek et al.3%-35 derived the dispersion equations for
cylindrically symmetric geometries for one or more beams of charged
particles in both infinite and finite magnetic fields. The same group
of investigators36 has reported on an experiment in which 60-70 dB
electronic gain was observed over a length of 20 cm of mercury plasma.

When the beam and plasma are infinite in extent, an infinite
growth rate of oscillations occurs at the plasma frequency. In order to
provide for a physically realistic finite growth rate, some authors
have incorporated the effects of particle collisions or thermal velocity
distributions in their models of infinite cross section.

Crawford®’ considered both infinite and finite beams in an infinite,
uniform, warm plasma. At the beam-plasma interface the Hahn®® rippled
surface charge model was used when the beam and plasma were both cold.

For a warm plasma, where the electronic Debye length may be comparable to or
greater than the RF excursions of the beam electrons, this model was not

considered to be appropriate because the surface charge effects on the
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plasma side of the beam-plasma interface became negligible. Therefore,
the Hahn model was replaced by a continuity condition of pressure and
plasma current across the beam-plasma boundary.

It has been shown by Kislov and BogdanOV,12 by Bogdanov et al.%°
and by Vlaardingerbroek et al.%® that growing waves with finite growth rates
occur in cold, collisionless beam-plasma systems of bounded cross section.
In plasmas with parameters of the usual values attainable in the
laboratory, the finite geometry has a considerably greater damping effect
than do thermal velocities and collisions, as was shown by Sim.pson.39
He, as well as Karplyuk and Levitskii,*® Golant et al.*' and Stover,*®
considered the effects of dielectrics, such as a glass or ceramic tube
containing the plasma, on the dispersion equation. Such realistic
additions add extra boundary conditions to be satisfied in the solution
of the field equations before the final dispersion equation is obtained.
It is found that for such models the dispersion eguation quickly becomes
intractable for solution, even on a modern, high-speed digital computer.

1.2.2 Large-Signal Theories. Many investigators have solved the

dispersion equation for beam-plasma systems under various simplifying
assumptions. The complex propagation constants appearing in the dispersion
equation yield the small-signal gain of the system as a function of
frequency.26:27:38'35’39)48)44 The general result of these theories is
that maximum values of gain in the order of 35-15 dB/cm may be expected
for low level operation of a beam-plasma system. As the signal level
increases, however, nonlinearities begin to set in, limiting the power

output of the device. Thus, for efficiency computations and harmonic

generation analyses, 1t is necessary to employ a large-signal analysis.
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Rowe*®,%® ysed a Lagrangian (ballistic) theory to calculate particle

trajectories and the extent of energy conversion between the beam, the
plasma and the RF wave. Microscopic collisions within each charge group
were not included in the calculations, but Rowe pointed out*’ that
collision effects may be introduced simply by adding an additional
electric field term appropriate to the collision model in the Lorentz
force equation. Finite temperature effects were accounted for by
assigning appropriate particle distribution functions in velocity-phase
space. Gould and Allen®*® subdivided the electron beam into disks and
determined the forces on them from potentials found by appropriate
Fourier transformations, which 1s a permissible approach since the plasma
was assumed to remain linear and superposition is valid in that case.
The plasma was also assumed to be warm, thus including the electron thermal
speeds and the dissipative effects of short-range collisions. Geidne®®
also used the disk model for the electron beam as well as the plasma
electrons. He expanded the force equation to third order for the beam
electrons and to first order for the plasma electrons (the plasma was
assumed to respond linearly to the electric field in this treatment also).
All three of the nonlinear theories described above yield infor-

mation on harmonic generation in a beam-plasma system. It is known from

the small-amplitude zero-space charge ballistic theory for klystrons46
that
i
iA = 2J = 2(0.58) = 1.16 , (1.11)
o) 1 nax

where 1 and IO are the fundamental RF and the dc beam currents,
1

respectively. J 1s the Bessel function of the first kind and first order.
1
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Similarly, for the maximum second harmonic current, ig/IO = 0.98. There
is a relatively slow diminution of the harmonic amplitude as the harmonic
order increases, arising from the very sharp peaks in the current density
in a tightly bunched electron stream. Large-signal calculations,
including space-charge effects, yield values of il/Io in the vicinity of
1.6 under optimum conditions in traveling-wave amplifiers and klystrons.
Similar results have been found for beam-plasma interactions, with

S

harmonic to dc current magnitudes being on the order of unity.4 Some

experimental results to support these theories have been reported by

50

Berezin et al.®® and by Allison and Kino.°t

1.3 Coupling to Beam-Plasma Systems

Since space-charge waves do not possess a time-varying magnetic
field, they do not radiate into space. To couple to them it is necessary
to use probes, slow-wave structures or waveguides, for example. Thege
structures have external fields which may couple to the fringing fields
of the space-charge wave. Another possibility is mode coupling, which is
ordinarily a weak effect, however. Coupling to a plasma column without
the presence of material walls, probes or beams can occur at steep
density gradients or in certain directions in anisotropic media. An
example of the former are the Tonks-Dattner resonances,>% which are
resonances due Lo space-charge oscillations. These were analyzed and

53

explained theoretically by Nickel et al. as follows.

When the frequency of an applied RF wave exceeds the electron
plasma frequency at the plasma column edge, a wave of the type discussed

2

by Bohm and Gross® can propagate in toward the column axis. As it does

so, it propagates up an electron density gradient until a point is reached
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at which the applied freguency equals the local plasma frequency. Beyond
this point the wave is evanescent. At a discrete number of applied
frequencies, standing waves can occur between the column edge and the
high-density core of the plasma. Waves at these particular frequencies
thus give rise to the Tonks-Dattner resonances because the standing waves
transverse to the column also represent the cutoffs of a series of modes
propagating along the column.

In beam-plasma amplifiers it is highly desirable to couple as much
of the input signal as possible into the space-charge waves of the device.
Unfortunately this is not a simple procedure. In most practical cases the
net power output and the actual gain of the device are quite severely

26,54

limited by the coupling methods so far employed, even though a

considerable amount of work has been expended in improving the

couplingzs’55

and even though many different schemes have been used.

Among them are cavities, reduced height waveguides, coupling helices and
slow-wave structures immersed in the plasma. A typical beam-plasma system
having helices as coupling structures is depicted in Fig. 1.2.

One very attractive coupling scheme has been investigated fairly
extensively theoretically. Feinstein®® has examined the conversion of
longitudinal wave energy of bunched charges into transverse electro-
magnetic form in electron tubes and multistream plasmas. Neufeld and
Doyle57 showed that the longitudinal oscillations in a homogeneous
plasma due to an electron beam may be converted into transverse oscillations
whenn the longitudinal waves interact with the density fluctuations of
the plasma electrons. Allen et al.>® pointed out that in certain

frequency regions the anisotropic dielectric "constant" of a homogeneous
q ¥ g

plasma is such that the radial dielectric constant, € p? is negative
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while the longitudinal dielectric constant €. is positive, a situation
which results in real propagation constants in both the radial and the
longitudinal directions. Thus the fields in the plasma do not fall off
radially, as they do on conventional slow-wave circuits.

When radial density variations exist, as is usually the case in

practice, Stover and Kino>°

showed that 1t 1s not necessarily possible to
obtain radial propagation through the plasma column. This is so because
the sign of err/eZZ may change across the plasma, the density of which
was assumed to vary parabolically across the column. This type of
variation does not necessarily exist in practice due to sheath formations.
Allen el al.°° reported on an experiment in which the presence of a
plasma increased the coupling in a system consisting of two waveguide
couplers by approximately 20 dB. They cautioned, however, that the
optimum plasma density for coupling is not ordinarily the same as for
maximum gain. A number of Russian investigators also reported on radial
propagation as a means of coupling to a beam-plasma system.el'es

When designing a coupling circuit, it is important to know the
impedance of the coupler and that of thée beam-plasma system. Gould and
Trivelpiece64 have analyzed the latter by use of equivalent circuits, for
which the impedance can be determined quite readily. Guest®® obtained
a closed-form expression for the impedance of a pair of idealized plane

grids immersed in a one-dimensional beam-plasma medium; while Christy66

made measurements of the plasma impedance in a gridded gap.

1.4 Objectives and Outline of the Present Study

In the present study the large-signal characteristics of nonlinear

beam-plasma interactions will be considered. In particular, saturation
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effects and harmonic generation under high-drive conditions will be
studied theoretically and experimentally. The coupling problem in
beam-plasma systems will be considered also. The impedance of an
elliptic cavity coupler will be computed and matched to the impedance of
a beam-plasma system.

In Chapter IT a linear plasma model is chosen and transmission-line
elements are derived for the equivalent circuit representing such a
plasma. The characteristic impedance of the equivalent transmission line
is completely determined by the plasma parameters and the geometry. Plasma
collisions, which represent a loss mechanism, contribute resistive
components to the equivalent circuit. These resistive elements appear as
the imaginary part of the complex characteristic impedance.

The one-dimensional nonlinear equations for a beam-plasma system
are developed in Chapter ITI. The method of Lagrangian mechanics is
employed which essentially consists of following each beam particle
individually through the interaction region. Electron overtaking and
saturation effects are thus accounted for. A similar approach is employed
in the two-dimensional analysis of Chapter VI. The electron stream is
accorded a full two-dimensional treatment, while the plasma "circuit" is
handled in a quasi-two-dimensional fashion. This is done by using the
one-dimensional circuit field expressions corrected by a weighting
function proporticnal to the radial variation of the longitudinal electric
field.

In Chapter V the solution of the nonlinear equations on a digital
computer is described and the results of typical calculations are

presented. Saturation characteristics for the fundamental as well as for
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the first few harmonics are shown. Effects of beam as well as plasma
collisions are studied.

Chapter VI deals with the experimental work. The beam-plasma
system used for these studies is described. The test vehilcle contains
a cylindrical plasma column into which an electron beam can be injected
axially. RF energy is coupled into and out of the interaction region by
means of slow-wave structures and cavity couplers. Test results consisting
of saturation data, harmonic power output and multisignal characteristics
are presented and correlated with the theoretical calculations of
Chapter V.

Coupling methods are considered in detail in Chapter VII. The
impedance of an elliptic cavity coupler, which is essentially a quasi-
optical coupling structure, is calculated. The requirements of matching
such a coupler to a beam-plasma system are discussed. Comparison is
made between this method of coupling and other methods, such as sections

of slow-wave structure in the vicinity of the electron bean.




CHAPTER ITI. DEVELOPMENT OF THE ONE-~DIMENSTONAL CIRCUIT EQUATION

FOR PLASMA WAVE PROPAGATION

2.1 Introduction

When an electron beam is passed through & plasma, amplification
of an RF signal propagating through the plasma may take place under
certain conditions. In this analysis cylindrical systems, i.e., plasma
columns and drifting electron beams, will be considered. Maximum use
will be made of previously developed traveling-wave tube theory, which
can be readily adapted to this study.

It is possible to think of a plasma column by itself as a slow-
wave "circuit" along which RF energy can propagate just as along a
transmission line. For such a transmission line an equivalent circuilt may
be found which is made up of distributed elements given in terms of the
plasma parameters. This approach restricts the plasma to linear behavior.
Geidne*® has calculated the electron displacements and the RF currents in
the beam and the plasma of a beam-plasma system. He found that when the
device approaches saturation the beam electrons are driven beyond over-
taking, while the displacement of the plasma electrons is very small.
Physically speaking, the charge density of a typical electron beam is
much smaller than the charge density in the plasma. Since the same fields
must be supported in both the beam and the pla;ma, the space-charge
restoring forces in the plasma are then much greater than in the beamnm.
This prevents the plasma particles from making large RF excursions. Thus
it 1s Jjustifiable to assume linear behavior for the plasma and introduce

the nonlinearities in the electron bean.

o0
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In this chapter the plasma characteristics will be studied.
Subsequently an electron stream will be introduced and the interaction of
the waves in the plasma with the space-charge waves on the electron stream

will be considered.

2.2 The Dispersion Equation for a Plasma Column

Consider the geometry for a plasma column coaxial with a conducting
cylinder, as shown in Fig. 2.1. First the following assumptions are
made about the plasma column.

1. The plasma is cold, stationary, uniform and neutral.

2. A static magnetic field BO = BZ is assumed to exist along the
z-direction.

5. DNonrelativistic mechanics applies.

L, A quasistatic analysis is appropriate.

5. A one-dimensional treatment is appropriate for the time being.
The one-dimensional treatment 1limits the motion of the electrons in the
plasma "circuit" to the axial direction. This approach is of course a
good one in the case of an infinite or very strong axial magnetic field.
For a more moderate magnetlc field it is reasonable to assume that in a
plasma column of fairly small transverse dimensions this restriction on
the motion can be satisfied regardless of the magnitude of the magnetic
field by assuming that the plasma is in a region where the axial RF
electric field is strong compared with the transverse electric field.

In most microwave beam-type amplifiers the RF wave is slowed
sufficiently so that it travels at approximately the same velocity as the
beam electrons. The velocity of the beam electrons in turn is usually

substantially less than the speed of light. Thus the wavelength of the
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disturbances in the slow-wave system is much less than a free-space
wavelength. This fact permits the use of a guasistatic analysis, in
which Maxwell's equations describing the model under consideration in
this study are simplified considerably by replacing the full set of field
equations by the equations of electrostatics.

It is possible to find a simple relation between the electric
field in the z-direction and the "circuit" voltage. In terms of the

magnetic vector potential, Ki given by

B = vx& , (2.1)

where B is the magnetic field strength, and the scalar potential, V!,

the electric field may be written as

F = -vv'-g . (2.2)

In the quasistatic analysis B is time independent, so that one of

Maxwell's curl equations becomes

vxE - -2 = 0 (2.3)

and E is directly derivable from the scalar potential. Taking the

z-component of Eq. 2.2,
ov'! z
E = -5, °"5% - (2.4)
Since K and V' are arbitrary, K)may be expressed in terms of V' by the

Lorentz gauge condition,

v - K’+~uoeo g%—- = 0 . (2.5)
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Assume that the RF quantities in general vary as exp[j(wt-np-kz)].

Note that k is a complex propagation constant, in general given by

Jk o+ jp

1

or
k

B - , (2.6)

where B is the phase constant and ¢ is the attenuation constant. A
negative value of O implies a growth in the wave amplitude. Utilizing
the fact that there is no radial component of current and no azimuthal

variation of K) in the present analysis, Eq. 2.5 beconmes

e R @)

Substitute AZ from Eq. 2.7 into Eq. 2.4% to obtain

W €

— o O H
Az N k Vi
B - - ov' By dve __ov' W€ -
z oz k ot oz 2 J ’
2
E - - ov' . O HSE, e
z dz k2 oz

let ko = a)'\/uoeo be the propagation constant of free space, so that

2 2
aV' i ___> av' < ok >
z 2 )

The radial propagation constant, 7, is defined by

=
I

2 &

2 2
7 K2 - k2 (2.8)
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For slow waves,

72 = k2% - ki = k2 (2.9)
so that
E, = —g<§> = -g\—zll . (2.10)
Thus
E = jkv' . (2.11)

Z

If V' at r = b is the "circuit voltage," V, of the plasma column, then

E, = JkV . (2.12)

From Maxwell's equations given in Appendix A, and using

VxE = 0, one obtains
1 aEZ
B, = - jk or (2.13)
and
n
Eq) = i B, (2.14)

where it is assumed again that the field quantities vary as
exp[j(wt—n@—kz)]. The wave equation for propagation in a plasma column

may then be written as

OE 2
1 0 z 2 _n°- -
- g;(f 5;—->+<Tp - EZ = 0 . (2.15)
r ’
Here the radial propagation constant in the plasma, Tp, is related to the

longitudinal propagation constant, k, by




r (o [w)® 7
K R
™ = k% — = k% . (2.16)

p Ky (wpﬂb)z [1 - §(v/w)]

L[ - 3(v/@)]® - (w fw)®-

The k's are components of the specific inductive capacity tensor derived

in Appendix B, wb is the radian plasma frequency given by

e®n

o & e
P me

, (2.17)

e}

w, is the angular electron cyclotron frequency given by

A
O = By

, (2.18)

where 7m is the absolute value of the charge-to-mass ratio of the
electron, and v is the radian collision frequency.

In the plasma region (Region I of Fig. 2.1) the solution to
Eq. 2.15 for EZ is given in terms of Bessel functions of the first kind
only due to the singularity of the functions of the second kind at

r = 0. Hence

EZI(r) = Aan(Tpn) , (2.19)

where An is an arbitrary constant. Outside of the plasma (Region II),
where the radial propagation constant is ¥, given by 72 = k% - ki, the
modified Bessel functions may be used, because with TS = -kZ the second

term in Eq. 2.15 is negative. Thus

Ezll(r) = BnIn(yr) + CnKn(yr) . (2.20)

For slow waves, 72 = kz, and in the one-dimensional case there are no

P-variations. Hence n = 0. Thus




EzI(r) = AJO(Tpr) (2.21)
and
EZII(r) = BIO(kr) + CKO(kr) . (2.22)
Since there is a perfectly conducting metallic boundary at r = a,
EZII(a) = 0 = BIo(ka) + CKO(ka) s
Ko(ka)
B = -Cg3 ) (2.23)
O
Then,
Ko(ka)
EZII(I‘> = CK (kl‘) -C W Io(k‘(‘) »
¢
EzII(r) f;YEET' [Ko(kr)IO(ka) - Ko(ka)IO(kr)] s
EZII(r) = Ci[Ko(kr)Io(ka) - Ko(ka)IO(kr)] s (2.24)
where
o - C
i 7 Ioikai
Differentiate Eq. 2.24 to obtain
aEZII(r)
- = —Cik[IO(ka)Kl(kr) + Ko(ka)Il(kr)] . (2.25)
At r =D,
EZI(r) = EZII(r) . (2.26)
r=b r=b

Therefore from Egs. 2.21 and 2.2k,

Il

AJO(pr) Ci[KO(kb)Io(ka) - Ko(ka)Io(kb)] s

C,
A = 3;75;57 [Ko(kb)IO(ka) - Ko(ka)Io(kb)] . (2.27)
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Substitute Egq. 2.27 into Eq. 2.21 to obtain
Cy
EZI(r) = 3;{@;67-[K0(kb)10(ka) - Ko(ka)IO(kb)]Jo(Tpr) . (2.28)

Differentiate Eq. 2.28 to obtain

BEZI(r) CiTle(Tpr)
—— = - __3315557—— [Ko(kb)Io(ka) - Ko(ka)Io(kb)] . (2.29)

In view of Eqg. 2.13 and since Dr = eoniEr inside the plasma, while Dr =

eoKeEr outside of the plasma, in the absence of surface charges one finds

that inside the plasma
€ k, OF

— . (2.30)

Since the radial displacement vector, Dr’ is continuous at r = b, it

follows from Egs. 2.25 and 2.29 that

€ K
O €

Jk

€k CiTle(pr)
ik JO(pr)

Cik[IO(ka)Kl(kb) + Ko(ka)Il(kb)] =

. [Ko(kb)lo(ka) - Ko(ka)IO(kb)]

Therefore

kT J(Tb) X (k)I (ka) - X (ka)I_(kb)
Jl(pr) Io(ka)KO(kb) + K0<ka)Io(kb> . (2.31)
o p o 1 o 1

This is the dispersion relation connecting o with k. For the case of
free space between the plasma column and the metallic wall, Ky = 1.

In many cases the collision frequency, Vv, is so small compared
with w that one may set vﬁb = 0. Then k = B and complex argument Bessel
functions may be avoided in Eq. 2.31. The solution of the dispersion
equation is then fairly stralightforward. Figures 2.2 and 2.3 show the

solution for a typical set of values encountered in a plasma column useful
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FIG. 2.2 FORWARD WAVE PASSBAND CHARACTERISTICS FOR THE LOWEST ORDER
AXTALIY SYMMETRIC MODE IN A DIELECTRIC-LINED METALLIC CYLINDER
FILLED WITH PLASMA. (a/b = 1.2, kg = 6.0, w, = 2.52.101°

rad/s, b = 0.152 cm)
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FIG. 2.3 PHASE CHARACTERISTICS FOR THE LOWEST ORDER AXTALLY SYMMETRIC
MODE IN A DIELECTRIC-LINED METALLIC CYLINDER. (a/b = 2.0,

wp/wc = 2.0, a)p = 2.52vlol° rad/s, b = 0.152 cm)
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in the type of beam-plasma interaction to be considered in the present
study. It will be shown later that the case of w, < ab is of particular
interest. Thus Fig. 2.5 shows this case for dielectric materials of
several values of £y (see Fig. 2.1). The forward-wave branch is seen to
depend on Kg» while the backward-wave branch does not. For the forward-
wave branch, the frequency w_, where B approaches infinity, can be

found by noting that Tp is imaginary for o, < w < wp and w, < wb

(provided v = 0). Thus

2
K.e = K‘.”Kl (2.52)
as B » =, Substituting from Appendix B this may be solved to yileld
w2 wi [20® - wi(&i -1))1F o+ ijz
mi = - —2 5% P + B 2, (2.33)
k2 -1 L(k® - 1)% k2 -1
e e e
For the cases of w, = 0 or Ky = 1 much simpler expressions may be
obtained from Egq. 2.33. Thus for Ky = 1 and W, + 0,
o +-w§
o = p_¢© | (2.3h4)
and for w = 0 and kv # 1,
c e
W
w, = —E— . (2.35)

The asymptotes shown in Fig. 2.5 were found using the appropriate

expression from above.
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2.3 Derivation of the Equivalent Circuit Elements

The equation of moticn for a plasma electron is given by the
following force equation (c.f., Appendix B):

- -

dv ov N N R > L o

=L = st o+ -V o+ v = -n(E + 2.
S E O W = aET xB) , (2.36)

where Vv is the RF velocity, and the dc velocity is zero for a stationary
1

plasma. In the one-dimensional case, with B = BZ along the z-direction,

and retaining first-order terms only, Eq. 2.36 reduces to
ov
Livwy = -nE (2.37)
W 1 bAN ? ‘

where v 1is the axial RF velocity and EZI is the total axial electric
1

field in the plasma. Since all RF quantities are assumed to vary as

exp[j(wt-kz)],
(Jo +v)v, = -mE .

or
v, = -—d—g§ . (2.38)

1 Jo + v TzI

The convection current density is given by

Jpe (po + pl)vl ’ (2.39)

where Py and p  are the dc and RF charge densities, respectively, in

the plasma. Neglecting the second-order term, Eq. 2.39 becomes

J = pv. . (2.40)

zZc Jo + v EZI
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Since o2, co o
W = —& - .o _ o
P me me S
this becomes
edws
JZC = WEZI(I‘) . (2.41)

The total convection current for the plasma column may be expressed

as 2% b
I = J[tjp J,.rara
0O 0O
_ O P
I, = b/\b/w o T Ezl(r)r dr dap ,
2n€ow? b
I. = aa;jr%%— u/\ EZI(r}r dr . (2.42)

0

From Eq. 2.28,

b
2 2 -
. _ ﬂedmp u/\ Ci[Ko(kb)IO(ka) Ko(ka)IO(kb)]J (7 0y @
ze o + v J (T b) ot tpt/T Ar
o''p
0
and
2 2 -
| 2me . Ko(kb)IO(ka) Ko(ka)IO(kb) b (2 b)
ze | Jo +v i J (Tb T
J o( D ) D 1P
Therefore, since by Egs. 2.24 and 2.26
E, = EZI(r) = C, [K (kb)I ka) - X (ka)I (kb)] ,
r=b
it follows that
2n€dw§b Jl(pr)
Tre = (Jo +v)T_ J (T Db) By (2.43)
p o'’p
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Combining Eqs. 2.10 and 2.43 one obtains

ot (jw + V)Tp JO(pr) T 9oz

2] 2
BIZC Jmneabpb Jl(pr) 5V’>
2

or
5v (jw + v)Tp Jo(pr) azzc

+ = 0
oz 2jmne _wb Jl(pr) ot
op

After rearranging,

[1 - j(v/w)]T_ J (T b) oI
v, /) 1y T (2.144)
17p

oz

2

2ﬁ€dwpb
_..)

From Maxwell's curl H equation and Stokes' theorem one finds

that at r = b,

2an@I(b) = I.+I,4 > (2.45)
where IZd is the plasma column displacement current through the cross-
sectional area of the plasma. Izd may be expressed by

2x b
I,y = u[‘Jf jweOEZI(r)r dr do , (2.46)
0 0
b
I,q = 2njoe L/W EZI(r)r ar ,
0]
K (xb)I (ka) - K (ka)I (kb) b
T . = 2xjeal, — ° < 2 /N J (T r)dr
zd o i J (T b) N o'\'p ’
o' Dp
0
] ) 2xtjowe b . Ko(kb)Io(ka) - Ko(ka)Io(kb) 5 (Tb)
a - T i J (T b ’
Z D o< P ) 1 P

: 2rjwe b Jl(pr)
Tha = T 7 (7o) b - (2.47)
p o'’p
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It is apparent from Egs. 2.43 and 2.47 that

2xe b 25 o \ J_(T b)
Lo T = (ot T ) R T
JAd zd o + v)T jwT J (T z

I° p o' 'p

.

2 =
I 41 _ < _wlw - jv) Treprb Jl(T b) B )
jo -+ b b
zc zd o2 J (jw v)Tp JO(Tp ) Tz
b
I +1I = (1_‘ﬁw_;il’l>1 . (2.48)
zC zd 2 zC
(DP

Substituting Eq. 2.48 into Eq. 2.45 one obtains

27H __(b) = < - ‘-"—@—‘——J—V—l> T . (2.49)
I 2 zc
w
b
From Appendix A, H(pI is given by
. n . .
- — ~+ = - . .
J r HzI JkHCPI JE‘:oErI(mJ. EOECPI(DKX (@ 50)
But by Eq. 2.13,
n
ECPI ~ kr EzI ’

and since there are no ®-variations (n = 0), Eg. 2.50 becomes

JkHCPI = Je B o, (2.51)

But by Eg. 2.13,
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Thus
kH = -JwE L BEZI K
JET I 5k o 1
or
[43) aEZI
HCPI = Jeo— TI‘KJ_ . (2.52)

k. B = K E
I'rI =b e rII r=b
Hence
Fp e OB 1
or Ky or

In view of Eq. 2.25 one can see that Eq. 2.52 becomes

K K
Hp () = -de :li iE‘CiR[IO(ka)Kl(kr) + K (k)T (kr)]
or
Hor(r) . = -der, %-ci[lo(ka)Kl(kb) + K (k) ()] . (2.53)

Making use of Egs. 2.24 and 2.26 it is possible to write Eq. 2.53 as

%~neB'Ezb , (2.54)

H@(b) = -Je,

where
Io(ka)Kl(kb) + Ko(ka)Il(kb)

BY = K (0)I_(ka) - K_(xa)I_(kb) ° (2.55)

>

Substituting Eq. 2.54 into Eq. 2.49 yields

-2xbje %-KeB'E = (i - 949Li;ﬂ32-> I,
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By Eq. 2.12 this becomes

2nbje k KB'joV = kI < J 0w - gV >
O e zC o

w
p

or

oI I (ka)X (kb) + K (ka)I_(kb)

ZC | 2xbe kk ° = ° = L ¥,
dz o e Ko(kb)IO(ka) - Ko(ka)IO(kb) ] . L- Jv/w)| ot

- (wp/w) (2.56)

Equations 2.4k and 2.56 describe the transmission line pictured

in Fig. 2.4, if they are written as follows:

ov aIzc
Sz * Lo ot 0 (2.57a)
and
oI
S oo . (2.57b)
e (1 - 3(v/w)] 3 _(T)
T[1-3(v/w)] J(Tb
L = - —F (2.58)
© 2n€ow§b Jl(pr>
and
-
N I (ka)I (kb) + K (xa)I (kb)
¢ = 2sbke k . < ° 1 ° 1
o oe [, _L- j{v/w) Ko(kb)Io(ka) - Ko(ka)lo(kb)
(wp/w)2J (2.59)

Inspection of the last two equations reveals that the collision terms
introduce resistive components in the equivalent circuit. In Fig. 2.4
the lossy elements are not shown separately, but are included in LO
and CO. If collisions are negligible, v/@ - 0 and LO and CO are pure

inductances and capacitances per unit length, respectively. Some typical
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values of Lé and Cé as a function of Pb when v = 0 are shown in Fig. 2.5.
The parameters needed in calculating these values of LS and Cé are chosen
to be representative of a plasma column useful in the beam-plasma
interaction device to be studied later.

For the transmission line of Fig. 2.4 the phase velocity, \

is gilven by

v, o= 4%— . (2.60)
In general
2 2
e Llc , (2.61)
k B - ja) 0’0
which reduces to
2
o= & SESE (2.62)
‘ B L'c!
o0

where Lé and C! are L and C_, respectively, with v = 0. From Eq. 2.61
k2 = ofLC (2.63)

which should yield the dispersion equation, Eq. 2.31, derived previously.

This can be shown by substituting Eqs. 2.58 and 2.59 into Eq. 2.63. Thus

T [1 - j{viw)] J (T b)

1
K = o2 -2 o 2nbe k _kB' 10
2n€dm2b Jl(pr) ©€ 1 - 1 - v/
P (0 /o)

b

Rearranging, r
T J (Tb)
N p (o _/w)
L o7 3(v/w)
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2.49, mc/co = 0.428, w, = 2.65.10*° rad/s, a/b = 6.26, b =
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But from Eq. 2.16

R e

(w_[w)® T

p p

t- 1 - j(v/w
Therefore
L E&. ?B. Jl(pr) Ko(kb)IO(kb) - Ko(ka)Io(kb) (2.60)
" k. k J(Tb) |I (ka)K (kb) + K (ka)I (kb)| ° ’
e o' p o 1 o 1

This is precisely Eq. 2.31 and agrees With the dispersion equation given
by Trivelpiece and Gould,® if v = 0 and k = B.

Gould and Trivelpiece64 derived a more detailed equivalent circuit
for a collisionless plasms column, as shown in Fig. 2.6. The combination
of L and Cl is resonant at &b’ while the combination 6f L2, 02 and C3

1

gives rise to the hybrid resonance at Qmi +'m;)1/2.

due to the dielectric loading of the space between the plasma column and

Capacitance C4 is

the conducting cylinder coaxial with it. If the plasma column fills the
cylinder, C4 becomes infinite. This equivalent circuit shows more of
the details of the plasma column characteristics, but the simple
equivalent circuit lumping all these components together into Lé and Cé
is entirely adequate in the treatment to follow. This is so because in
the present analysis Zo’ determined by the lumped elements, is of

primary importance, as will be seen in subsequent chapters.

2.4 Derivation of the Circuit Equation

If an electron beam with convection current -iz is allowed to pass
near or through a plasma, one has in effect a beam-loaded plasma column

transmission line. This is depicted in Fig. 2.7. The impressed current
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in the plasma due to the motion of the electrons in the beam is Biz/az.

One thus modifies Egs. 2.57 to include the presence of the beam as

follows:
oI (z,t)
oV i’t) + 1 —-Egg‘"“" - 0 (2.65a)
and
3T (z,%) 0i (z,t)
__SEZ—_ + CO BV i’t = ——Z_BZ—-— . (2'65b)
But
an(Z)t>
o= - A (2.66)
and
aqz(z:t)
S = DZ(Z:t) > (2.67)

where q, is the charge giving rise to the current iz and P, is the

charge density. Then Egs. 2.65 become

oI (z,t)
ov(z,t ?
D2b) g —=— = 0 (2.68a)
and
dI_ (z,t) 9 (z,t)
zcz SN c, oV ztt _ Zt ) (2.68b)

Differentiating the first of Egs. 2.68 with respect to z and the second
with respect to t and combining them so as to eliminate Izc(z,t) (the
order of differentiation with respect to z or t being immaterial), one
obtains a wave equation, which will be designated the "circuit” equation.

Thus




D2 1
3V(z,t) o W(zt) _ P, (2,t)
dz2 © 0 32 ° >t2

Recalling Egs. 2.60 and 2.61 and noting that the characteristic impedance

of the transmission line of Fig. 2.4 is given by

LO
Z = ¢’ (269)

the final form of the circuit equation is

N

dz2 vi dt2 o dt2

0%V (z,t) 1 %(z,t) _ ‘o 33%(z,t) (2.70)
(z,t) g , .

provided @ << B so that B = k. In a typical laboratory plasma column
useful for beam-plasma interaction this requirement is readily satisfied,
as will be shown later.

Figures 2.8 through 2.12 show the real part of the characteristic
impedance as a function of Bb for v << w. The modulus of ZO is chosen
to correspond to the interaction impedance used in traveling-wave tube
theory, while the imaginary part of Zo, which is usually small compared
to the real part by virtue of v << w, gives rise to the "ecircuit" loss.
The parameters chosen for the computation of Zo in Figs. 2.8 through 2.12
apply to a plasma column with a particle density of approximately
1.5 x 10** to 6.0 x 10** cm™® (fp = 3.5 to fp = T7.0 GHz) and a cyclotron
frequency of 0.75 to 1.4 GHz, with w, < W< @ Figures 2.8 through
2.11 are for a/v = 6.26 and thus are appropriate for a typical beam-

generated plasma. Figure 2.12 is for a/b = 1.2 and would thus apply to
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a plasma filling the whole dielectric cylinder. Such a plasma could

for example be generated by a Penning discharge. Comparison of the
figures shows that the former type of plasma column has a substantially
higher characteristic impedance and would thus result in better beam-
plasma interaction. This is borne out by experiment. In Fig. 2.13 both
the real and the imaginary parts of the complex characteristic impedance
are shown for the Ky = 2.0 case of Fig. 2.8. Note that the imaginary
part is quite small compared to the real part and is negative. This

is so because the imaginary part of the equivalent inductance, Lo, is
small but negative, while the imaginary part of the equivalent capacitance,
Co’ is positive and in general has a slightly larger phase angle than

the 1nductance. The value of vﬁm = 0.0012 is typical for the beam-plasma

experiments to be described later in this study.
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CHAPTER III. LAGRANGIAN FORMULATION OF THE ONE-DIMENSIONAL

BEAM-PLASMA INTERACTION EQUATIONS

5.1 Lagrangian Coordinates

Consider electrons moving in the z-direction (one-dimensional
analysis) as shown in Fig. 3.1. All the charge passing plane z, at
t = 0 arrives at plane z, but the amount of charge passing plane zZ,
during a time interval dto may take a longer or shorter time interval
dt to pass through plane z. During an infinitesimal interval of time
dto a total charge

dq = -Iat, (3.1)

passes plane zZ, at a time t = 0, where IO is the injected current and

is a positive quantity. Following the same set of electrons, at plane z,

dg = -I(t)dt . (3.2)

Equating Egs. 5.1 and 5.2, since no charges are created or destroyed in
the intervening space between z and z,

dat
o

(t) = I3 - (3.3)

In the two-dimensional analysis of Chapter VI provision is made in the
computer calculations for beam electrons leaving the plasma column.

(This corresponds to beam interception on the circuit in a traveling-wave
amplifier.) Since

IO
D(ZO}O) = - > (51‘)

o}

_55_
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FIG. 3.1 ELECTRON MOTION IN A ONE-DIMENSIONAL SYSTEM.
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where Uy is the velocity of the electrons crossing plane z it is
possible to write the following expression involving the charge density
represented by these electrons. Thus

I 0z
0

oz

p(z,t) = ; (3.5)

- L
Yy t

where the absolute value sign must be introduced due to the multivalued

nature of the charge density. Physically, this accounts for electron

crossings between planes 2, and z. Equation 3.5 is the conservation of

charge equation used in a Lagrangian treatment.

While in anEulerian analysis the independent variables are
usually distance and time, it is convenient to choose the distance and
the entry phase, ®01’ of the fundamental RF component as the independent
variables in a Lagrangian treatment. With an appropriate normalization
the distance variable 1s expressed in terms of the fundamental frequency
as follows:

Cw

l —
y, = 1—1;——2 = CBz = 2C N, (3.6)

where Be is the stream phase constant and Cl is a beam-circuit coupling
parameter, or gain parameter, for the fundamental frequency given by
3 IZO:LlIO
¢, = A (3.7)
Né & z/7\S is the number of stream wavelengths at the fundamental
frequency. In Eq. 3.7, ZOl is the interaction impedance obtainable

from Eq. 2.69, IO is the dec current in the stream, and VO is the

stream voltage. Note that the modulus of ZOl is used in the definition
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of the gain parameter. This 1s necessary when v % 0 (and hence 201 is
complex) in order to keep Cl a real number, which insures that
gquantities such as ' and some of the other normalizations in the
following remain physically meaningful quantities.

The entrance phase for the fundamental frequency is defined by
= -wb_ . (3.8)

It is convenient to define dependent variables normalized with
respect to the initial average electron velocity, u- In a nonlinear
theory the average stream velocity is a function of displacement and

so the dependent velocity variable is

u dy
_ 4z . o 1 b >
Yz T oat = Two a& Y% <? * QClu(yl,QOl) s (3.9)
t,2 1 /
0
or
dyl
T = C o <? + 2Clu(yl,®oli> . (3.10)

Here 2Cluou(yl,®01) denotes the RF velocity of an electron at a given
displacement plane.
Recall the conservation of charge equation, Eq. 3.5, which can

be written as

azo
Io ot
O(Z;t) = = E— Sz
I3 It

In Lagrangian varlables,

?rf} = u(yl’q)ol)

U, <é + 2Clu(yl,®ol)>
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and

dz dz Fo 1) Jo10) I510)
[e] n

O O1

Ol
S T 3 30 ot T vt 6®n ’

where n denotes the harmonic number of the RF wave component to be
considered. Note that @n represents the phase of the nth harmonic
component relative to the phase at the entrance to the interaction
region. @n is based on a coordinate system which moves with the dc
stream velocity, u- The conservation of charge equation in the new

variables now becomes

I |00
,@ = - 2|0t . <‘ o ‘> ) .
p(yl 01) u 5®n v 1+ EClu(yl,QOi) (3.11)

1

In a beam-wave interaction device the actual wave traveling
along the circuit has a phase shift (a phase lag for a typical
amplifier) with respect to a hypothetical wave traveling at the stream
velocity u . This phase shift, Gn(yl), is due to the beam loading as
energy is given to the wave. The phases of the jth particle at any
value of [yl,®n(yl,®ol)j)] denote phase positions relative to the wave

at that yl—plane. Hence at any displacement plane,

y
1
= . = +
01,] o Cl en(yl) CI301,3' not Qn(yl’Qol,j) ?
or, dropping the particle label, J,
Yy
6,(v,) = ng- -mot -0 (v, ) . (3.12)

1
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This may be written as

c
- L
y, = 3 ®n(yl;@01) +6 (v.) +na>t> . (3.13)
Also note that
oc (v .2 ) o a8, (v ) G5
oy ¢ dy )
1 t 1 1

In Fig. 3.2 representative curves are shown in order to depict some of
these quantities. Curve A represents a reference trajectory of slope
Cl/n for an electron starting at zero time and position which moves
through the device at a uniform velocity u,- Due to the large-signal
interaction all electrons are speeded up or slowed down, so that Curve

B, of slope
C

o o <l C1u<y1’®01) P)
yl’ o1

obtained from Eq. 3.9, represents the actual electron velocity. Curve

dy
1

a0
n

¢, of slope (Cl/n)/(l+Cnbn), represents the circuit cold phase velocity,
where bn is known as the injection velocity parameter and is a measure
of the beam-wave relative velocity. By definition

u_ - v
TAY o} on

, (3.15)

where Von and Cn are the phase velocity and coupling parameter,

respectively, for the nth harmonic RF component. Curve D, of slope

Cl/{n-Cl[den(yl)/dyl]] represents the actual wave phase velocity.
Differentiating Eq. 3.13 with respect to the time, t, and

equating the result to Eg. 3.10, one obtains
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FIG. 3.2 LARGE-SIGNAL FLIGHT-LINE DIAGRAM.
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o0 9
oy, ¢ o0 0,0,) dy, L W) vy .
at ~ n Sy at dy ac ) o
1 1
dyl
Frai Cl(i) <l + 2Clu(yl, ®Ol>>
and
o0 (y,e ) ay, a9 (v)) dy,
dy ax T dy a - 2C1nwu(yl,®ol)
1 1
Thus it follows that
2
8®n . den(yl) i Clmwu(yl,QOl)
dy, dy, C o[l +2C uly ,0 )]
or
a‘Dn(Yl)‘DOl) .\ d6n<y1> _ 2nu(yl,®01) (5 16)
9y, dy_ L +2C u(y ,e_ )

This is the velocity-phase equation giving a relation between u and 0.

It represents one of the large-signal analysis working equations.

3.2 The Circuit Equations in Lagrangian Coordinates for v_= O

The circuit equations taking higher harmonic components of the
RF wave into account may be easily deduced from the result obtained in

Chapter IT. Thus

azvn(z,t) ) Bzvn(z,t) Z azpn(z,t)
} - - . (3.17)
dz2 vin dt2 on dt2

Zon and Von are the interaction impedance and the phase velocity,

respectively, at the nth harmonic. In terms of the notation of Chapter 1T,



Zon = "_ ) (518)
on
L T,panme JO(Tpnb)
Vin on on . Jl(Tpnb)
o (i

PN (/)

I_(B2)K (Bp) + K (B 2)T (B,b)

K (B0 (Ba) - K Bai (e O
and
ZOH _ 1 _ 1 <l _ 1
Von Cén 2ﬁb€one6n (ab/nm)z /
Ko(ﬁnb)IO<Bna) - Ko(Bna)Io(ﬁnb) ( 20)
Io(Bna>K1(Bnb) + Ko(Bna)Il(Bnb) . >

Equation 3.17 will now be cast into a form that makes use of the
Lagrangian variables. There are actually n circult equations, one for

each harmonic. The circuit voltage may be written as

[oe]
J (nwt-B 2)
V(z,t) = Re 2 Vn(z)e s (3.21)
n=1i
where it 1s assumed that the voltage components can be defined as the

product of two slowly varying functions, one of distance and one of

phase. In view of the discussion following Eq. 3.11 define ®n such that
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A
@n(yl,®01) = -t +B 2z, (3.22)

where Bn is the circuit phase constant used previously.

Making use of the Lagrangian variables, Eq. 3.21 becomes

co

z I -j® (y »® )
A 01 O nvi’ oa
V(yl’q)cn) = Re Cl Z. An(yl)e ’ (5.23)
n=1

where An(yl) is the normalized voltage amplitude for the nth harmonic
along the circuit and Cl is the coupling parameter for the fundamental
RF component.

The beam charge density p(z,t) for a tightly bunched beam may
be expected to have a large number of harmonics. Thus, expanding P

into a Fourier series in the phase variable, @ ,

o(z,t) = ii <%n sin(—@n) +b cos(-@n{> . (3.24)

Since the fundamental frequency and its harmonics have commensurate

periods, the Fourier coefficients for the various harmonics may be

obtained from

Tw .
2 ' =30, 5
p,(2) = o p, (2,9 )e ao (3.25)
0
where T = 2nL/¢ and L is an integer. Thus
2L
1 .
a, = == Jf pn(z,Qn)31n(-®n) as
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and

27L

bn = = f pn(z,cbn)cos(-cbn) dCI)n
0

Substituting these into Eg. 3.24 one obtains

o 2nL
_ 1 (e (-
pn(z,t) = }j — [(i\/p pn(z,®n)s1n( @n) d@é) sin( @n)
n=1 O
2nL
+ <:L/\ pn(z,®n)cos(—®n) d@%) cos(—@n)} . (3.26)
0
Since
-39

cos(-@n) + s1n(-©n) = e 5

Eq. 3.26 becomes
oo 2nL
_ 1| . —

pn(z,t) = Re {: }: — [ < u/‘ pn(z,®n)31n e, d@é) sin( @n)

n=1 0

2nL 2nL
+ <i\/h pn(z,Qn)31n o d®;> cos(—@n) + <:k/ﬂpn(z,®n)cos o d®;>
0 0
27l
. cos(—@n) + 3 < Jf pn(z,®n)cos o d@é) 31n(—®n)]:}
0

or

S 1 _jén EﬂL
pn(z,t) = Re[ j{: = e (? b/‘pn(Z’Qn)Sln o do

n=1 0

2nL

+ u/\ pn(z,Qn)cos o d@%)}

o
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Substituting from the Lagrangian variable continuity equation, Eq. 5.11,

this becomes

I & -j0 21l os © (v ,0' )ao! 2
0 n nvi’ 01’7 o1 .
p(z,t) = - Re [ — ;ﬂ e < J[ +
[, e 1
© n=1 0 L 2Clu(y1’®01> 0
sin @n(yl,®él)d®él
- ] een
H
1+ EClu(yl,QOl)
where the prime denotes the variable of integration.
Note that from Eq. %.27 one may write
Py = P, COS @n + P, 8in @n . (3.28)

The first and second time derivatives of the space-charge density are

apn Bpn 8®n
55 T S 5% (3.29)
n
and
2 2 2 2
) Py ) Bpn ) o X a@n ) Py (3.30)
32 9% 32 ot d92 .
n

If the normalized circuit voltage given by Eq. 3.23 is used, the circuit

equation may now be written as
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2, z I, ,ac 2 dZAn(y ) z,I, s 2 d2®n
= (l 1 1 cos & - A (y) sin @
C N avd n Cl U n'va av2 n
n=21 1 yl yl
ae % Z I ot \ZaAa (y ) 4o z I
n o1 © kR n 1 n . o1 O
+<a-—> cos@i'—.? C < > 3 T sin & +
yl n 1 Yo I Yl n c.ve
1 on
320 0o 2 - Z oo I
An(yl)[ % sin o+ < SEE£> cos @n] }— - 3;1 - Von [ Mg o
dt2 - on u

n=1i

2 L H 1 2 KL 1 1 1
cos @n(y1,®01)d®01 sin @n(yl,Gol)d®ol _
. - cos ¢ - sin @n

' n
1+ 2Clu(yl,®ol) 1+ EClu(yl,Qél)

O 0
(3.31)
From Eq. 3.12 one finds that
6
o n aé (v.)
- - J
dyl C:L dyl
2 2
a%o o d 0,(v)
- - 2
2 2
dyy dy’
30
no_
ot
and
d%%
= 0
dt2

Making use of these expressions in Eq. 3.31 one finds that




2~2 42 2.2 2
Z I C d=A Z w=C a<e
o170 £ ¥y n(y) 0170 1 n<y) .
cos & - A (y)] - sin @
C 2 n C 2 nwi n
1 u dy 1 u dy
n=1 o 1 o 1

N dy, C, ,02 dy, .G ay,
z, T, .. = z, . n%°I
sin & + An(yl)n cos @n} = —Z — =
C.v on
1 on n=1

2l cos o (v ,0! )ao! 2l gin o (v ,0! )ae!
. < f = = cos ch + f = sin <I>n>

! + 2 !
S 1 + 2Clu(yl,®01) N 1 Clu(yl,@Ol)

Since the coefficients of sin @n and cos CDn on each side of the equal
sign are independent of <I>n and since the sine and cosine are orthogonal,
equating coefficients yields two circuit equations for each value of n.

Thus

2~2 2 2~2 2
z I, o, a%A (y,) 2,I 5 o] Aty (n a8, (y )
nyl Cl d

2 C 2 y
1 ug dyl 1 ug 1
2,1, Zon nZa)ZIO 2l cos @n(yl,d)c')l)dCDél
+ A (y )n%® = - — —
cvd Bt Von % 1 +2C u(y ,0 )
1 on 0 1 W1l o

and




2,2 2 2.2
6
z,I, o= d n(yl) ZolIo w Cl dAn(yl) 0 d@n(yl)
¢ Ay, = T%7% 2 dy C T Tay
1 ug dy 1 u 1 1 1
1 o]
Z 0221 2% gin o (y ,0' )as!
B on o n“y’ o1’ o1
- Ty nlu
o) + 2C Q!
n ° 5 1 lu(yl, 01)
Rewriting the last two equations one obtailns
a%A (y.) a0 (y_) u?
o 2L o7 <y>(——-————> b 2y na
dy2 yl 2 2 1
1 1 on
7 _n%®1 u? L cos @ (y ,0' )ag!’
_ _on o n'1? 01’ " o1
- nlu Z IC .
o o o170y 1+ 2Clu(yl,®01)
and

2()d29(y) n(y)<n de(y)>
A (y - -
4 c d,
" dy? Y1 1 Yoo
1
7 n%°T u? 2l Sin @ (y @' )ao!
= O [ n'“i,’ 01 01
- v__nlu Z IC .
o o170’y 1+ 2Clu(yl,@01)

Simplifying further, the circuit equations finally become

e nn (b T S ()

dy2 <
1

u Z
(5) () e
|
Von Z,, cos @ (y , ) 01
7LC

+ 2 !
1 Clu(yl,Qol)

(3.32)

and
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u Z
: (=) ()
d Gn(yl) o dAn<yl) d6n<yl) n Von Zo]_
An(y1> 2 * dy dy T = - C :
dyl 1 1 1 1

2nL
in @ Q! o!
f sin @ (y ,20,)480 (3 53)
+ 2 !
0 1 Clu(yl,®01)

These are the circuit equations in Lagrangian coordinates and represent
two additional working equations (actually there are 2n of them, if

all n harmonics are considered) in the large-signal analysis. Note that
these equations appear in the same form as in the traveling-wave tube
case. This is reasonable, because the plasma in this analysis is
replaced by an equivalent circuit so that the plasma effects are hidden
in ZOn and Von' These latter quantities may of course be determined
after a solution of the dispersion equation for the plasma column has

been obtained.

3.3 The Lorentz Force Equation in Lagrangian Coordinates

In this analysis collisions between the beam electrons and the
plasma particles will be included by adding a term including the

collision frequency, Vo to the usual Lorentz force equation. Thus

..%
dv = = s
T TV = -(E +v x B) . (3.34)

The electric field in Eq. 3.34 is now separated into circuit and space-
charge field components. Taking the one-dimensional case and neglecting

relativistic effects one obtains
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(3.35)

0% oz _ <»avnc(z,t) . v . (z,t)
= dz dz ’

where the subscript c¢ denotes circuit terms and the subscript sc

denotes space-charge terms. Since

dz A
22y (1eeoate,))

Eq. 35.35 becomes

2 ov. (z,t) v (z,t)
2z 4 vy <? + 2C u(y ,9 )> = 1 < ng + —28< > .
462 c o 1% o1 z dz y

From Eq. 3.12

ae n d@n(yl)
- - )
dyl Cl dyl
and from Eq. 3,23
avnc<y1’®01) _ Z01Io BAn(yl) cos @ - A (y )sin @ a(Dn
oy - Cl dy n n\y n Syl
1 1

In view of these results the following force equation in Lagrangian

coordinates is obtained:

o0
. = Z I aC [ A (yv.)
42 v (i +2C u(y ,® {> =N ZZJ 81 - - [ o
ate c o\ 1 "1 ol 1 o v
n=1 .
ae (y.)
. cos (I)n(yl,@Ol) - An<yl) Sin ®n<yl’®01) <Cl - dyl >}

- nE (v,0) - (3.36)

nsc-z
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This form of the force equation contains the acceleration,
which needs to be eliminated for ease of solution of the final equations.

Note that from Eg. 5.9

a%z v _ ov EXL - 2 o ou V1
a2 dt v, dt By at
or
a3z au(y »® )
22 - ¢ Zu o (1 +2C u(y >0 ) __75_———__ . (3.37)
at®

An expression for the space-charge field term of Eq. 3.36 must
now be found. The harmonic method described in detaill by Rowe*® for
the conventional traveling-wave amplifier may be used. A derivation

of the space-charge field is outlined in Appendix C. Thus

(y.,0) = Von <:wb\> Jf (® - @')d@él  5.3)

E P
nsc-z'Y1’ n Y u(y ,@' )

where o is the plasma frequency of the beam electrons and where Fl—Z
is the one-dimensional space-charge field weighting function relating
the influence of an electron at @é on an electron at @n in determining
the space-charge field forces.

Now substitute Egs. 3.37 and 3.38 into Eq. 3.36 to obtain the

following form of the force eguation:
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- ( du(y ,e_,) ( >
2c u 1+ 2C u(y R ) —-———-——l———— + v ug ‘1 + 2Clu(yl,®01)’

- ZOJ_IO(D dAn(yl)
-0 ) D23 cos 0, (1,,0,,) - Ay(y,) sin 8, (v,8, )

n n(l) B ') '
.<5—_?id_yi—>}+ 2Canua><mb> f 1+2Cu(j,zq:)

This may be rewritten as
ouly ,o ) v
17 01 1 c
<l + aclu(yl’®01)> oy * o2 (a-)_> <l * 2Clu(yl,®ol)>
1

[0
ZO:LIO {dAn(yQ
= 2 1 oy dyl cos @n(yl,CDOl) - An(yl) sin @n(yl,®01)
10

F (o - &')do!
1-Z' n n o1

4
1+ 2clu(yl,¢»01)

or

(1 + 2C u(y @ )> au(y %o ) 2(1:2 <:—;9-> (1 + 2Clu(yl,®01)>

Zo. Ty da (y,) ,
< ne ) | e autg) - a0) s 0 0,)
1 0 n=1

0 dG( ) on -(D')d@'
.<<—3—' - —' ch . ><mb> f 1+2Cu(y 120,




“Th-
Making use of Eq. 3.7 and the fact that

2
uo = 2nVO s ( 5 . 59 )

one obtains the final form of the force equation:

[au(yl)d)ol) + 1 (Y_g_)] (l + 20 u(y o )>
ayl 202 w 1 1’ o1

[ve]
aa, (v,
Y [, Tl con 0 (v 0,) - 4,0y sin 8, (5,08,)

ol

s

=1

@, o B~ %),
‘<n'cld6dyi >~ LC2< ><wb> [ 1+zcu(ji:q')> ‘

(3.40)

This form of the force equation is appropriate for solution in the
large-signal analysis. It represents the last of the working equations
needed. Thus the set of equations that must be solved consists of

gs. 3.16, 3.32, 3.33 and 5.40.

3.4 Tneclusion of Loss Due to Plasma Particle Collisions in the Large-

Signal Equations

If the plasma column in a beam-plasma interaction analysis is
regarded as a lumped element transmission line, it turns out to be
relatively straightforward to include losses due to plasma particle
collisions. The interaction impedance used in the large-signal
nonlinear interaction equations is then a complex number, and the
analysis proceeds in much the same way as in the collisionless case.

Major changes occur only in the circuit equations.
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Recall that the field quantities along the plasma column were
defined to vary as explj(nwt - knz)], where kn is the complex

propagation constant of the nth harmonic, in general given by

. _ + 1
Ik, @+ Bn
or

k = B -ju . (3.41)

Here Bn is the phase constant and an is the attenuation constant. A
positive value of an implies a loss in the wave amplitude.

The dispersion equation for a plasma column contained in a
dielectric-lined metallic cylinder was found in Chapter II and is

shown here again for the nth harmonic.

- rl ?EE Jl(Tpnb) Ko(knb)Io(kna) —Ko(kna):[o(knb)

kK  k Jo(Tpnb) Io(kna)Kl(knb)+Ko(kna)Il(knb> ,  (3.k2)

e n

where

[ - (o _/raw)®

2 - k2<“l> e 1 - §(v/mw) L (3.43)

" (6 /r)2I1 - 3(v/mo)]

1 -
(L - 3(v/m)] - (o, /mw)? ]

.

The equivalent circuit elements at the nth harmonic are given by

T alL - 3(v/w)] JO(Tpnb)
J (T b)
1 pn

1, =
on

(3.44)

2xe w-b
op

and
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I (ka)X (kb)) +
C = 2nbk € k O( na> l( L ) Ko(kna)Il(knb) L
on noe Ko(knb)Io(kna) - Ko(kna)Io(knb) L L- (v /o
L (o /ow)® ]

(3.45)

Note that when collisions are present, Lo and CO are complex numbers,
the imaginary part representing a dissipation loss. For such an

equivalent circuit the phase velocity is given by

v = 2 P (5)4‘6)

on
yA = T - (3.47)

on
The "circuit" equation is the same as Eq. 3.17, but Zon is

now complex. Thus define

2 Z +3Z . . (3.48)

on onr onl

Z
In terms of normalized variables the circuit voltage is given by

|Z

I, © -39 _(y,,2_)
Wat) = — ) A (e N (5.19)

1
n=1

Proceeding as in Section 3.2 and expanding the charge density in a

Fourier series one obtains

oo

g0,(v,,0,))
o(ast) = ) ey O (5.50)

n=1
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Thus the circuit equation may be written as

® 2 2
IZOJ,!IO Z <C1('D> {d An(y1> - 23 dAH(yl) < _ d@n(yl) >
C u, dy2 dyl dyl
n=i 1

OIB

1 1

[ a% (y,) a6 (v,) }
ralr) |3 —2 (—--————- ( A(y)
yl
» st '3
e-a@n(yl,%l) ) Zon ()2 o (y) -3, (v,,2,,)
B v Pp\¥y/€
on
n=1
or
a®_(y,) a (v) ., a9 (v)) a% (y,)
Z = T8 Ty <5—_ dy FA )|
2
=1 dyl 1 1 1 dyl
2 2 . b
i <_n_ ] ae (v,) > L2 1_19_> ]}e-ﬂ’n(yl:@m) ] Z n2 Zon
cl dyl c2 Von Cl ,ZOl
BN n=1

() (2) e ™

Now the ratio of impedances is expanded as

Zon - Zonr + 3 Zoni é ¢ + 5t (5 52)
IZOl] ]ZOlI ]Z01| nr ni

Then Egq. 3.51 may be written as




i {dZAn(yl> . dAg;yl) <g~ ] degiyl) > ) An(yl)[j d2eniyl>

1 1 1 dy

] <»%: ] dedii ) > <: On-) } }_ -je (y »2..)
- i %? <gZ—n> <;§-> (¢, +3t,) pn(yl)e_jq}n(yl)@ol) (3.53)

The conservation of charge equation in normalized variables is

00

I
0 01

pn(yl’Qol) =

n
.54
1+ 2Clu(yl,®ol) (5.54)

1

Since the fundamental frequency and its harmonics are assumed to have

commensurate periods, the charge density may be written as

2 ' -j®n
pn(z) = s pn(z,®n)e a_ (3.55)
where
- 2 (5.56)

and L is an integer. Splitting the charge density into real and

imaginary parts,

o (v} = o (y)) +3e, () (3.57)
Then 2nl,
Py = H%f U/\ p, cos @n d@n
0
and 2xL
Phy = H%E P, sin @n d@n
0

Thus, in view of Eq. 3.54
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I Bl og o, (y,,9! Jao!
p . = - : Jf (3.58a)
1
1+ EClu(yl,QOl)

and 2l

3 H 1
. I Jf sin ®n(y1’®01)d®ol
Pni = u

(3.580)
5 1+ EClu(yl,QOl)

Now Egs. 3.53 and 5.5 are combined and the real and imaginary
parts of the various terms of the series on the left- and right-hand
sides of the equation are equated. Thus two circuit equations are

obtained:

e =0 o) (S e
- F (2 ) () G - o)

1
2
A (y,) n_ a6, (y,) . a=6_(y )
dyl Cl dyl

and

-2 A (y,)

dy2

5 (72 ) (2) (ot * o)

Substituting from Egs. 3.58, the final forms of the circuit equations

are as follows:
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ZAd:ry} [ < On) <__M>]A(y) _C:iL

u 2l oo o (y ,0' )de
.< 0O >§ f o1 o1l < >C
Von nr o 1+ 2C u(y @' C L ni
2

1

T osin @ (y 0! )d e
-f ' (5.59)
1+ 2Clu(yl,®01)
and
2

a6 (y,) , \aa, () a% (v) L2 /U

2 dy - Cc dy * > An(yl) = T\ v Cnr
1 1 1 dyl 1 on

2L X ' ! '

/h sin @ (y ,® )d@ : cos @n(yl,QOl)dQOl

‘ C nL ni )

& 1 1
0 L+ 2Clu(yl,® L+ Eclu(y1’601)

(3.60)
The velocity phase equation, Eq. 3.16, and the force equation,
Eq. 3.40, are unchanged when plasma collision effects are included.
The circult equations derived 1in this section may be compared

with the circuit equations derived by Rowe*®

for the traveling-wave
amplifier when loss 1s included. Inspection reveals that the loss

parameter for a traveling-wave amplifier is related to the imaginary

part of the circuit impedance used in this study by

¢, = -2C, 4 (3.61)

ni
where dn is the traveling-wave tube loss parameter at the nth

harmonic. Thus
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& = - ac. Tz : (3.62)

Since ZOni is negative, as was pointed out in Chapter II, dn is a

positive quantity, in agreement with traveling-wave tube theory.

5.5 Initial Conditions and Input Data

In the one-dimensional analysis of this chapter there are four
equations in four unknowns. The unknown quantities are the dependent
variables An(yl), 9n(yl), @n(yl,Qol) and u(yl,Qol). These are given
in terms of the two independent varilables Yy, and @Ol. It is not
convenlent to solve the equations as a boundary value problem, because
the conditions at the output of the interaction region are not known
a priori. An initial value problem requires a knowledge of the
dependent variables and some of their derivatives at the input only.
A solution to the equations may thus be obtained by integrating along
particle trajectories through the interaction region until saturation
is reached. The following initial conditions need to be specified.

1. Define

np>

A, (3.63)

An(o) no

the input signal level relative to ClIoVo'
2. Since the RF signal is applied at y, = 0 and the electron

stream also enters at yl = 0,
en(o) = 0 (3.64)

for all conditions.
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%. From Eg. 3.3%2 one finds that for yl = Q,

~ol(e- %) 5G] -

It follows then that

ae (o) u
n_ Snl n__<L>
Cl dyl Cl v
or

d9n<o) n Y, Zonr ve 6
_d_gr_._ = _—é—l—<§1-—l> = —nbn<'[—z——]'> . (5- 5)

1 o1

4, For an initially unbunched stream

aa (y,)

dyl

= 0 , (3.66)

y,=°
which says that the stream cannot affect the signal until stream
modulation has occurred. If the beam is prebunched, however, consider

Eq. 3.35. Since

a®6_(o)
dyl
from Eq. 3.65, it follows that
2
_4,(0) <d9n<o> _ 1_1_> 000 v0n) Con/ 12, )
dyl dyl Cl erCl

25l
1 1 1
sin @n(yl,®ol}d®01

o
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Defining the bunch injection phase angle, an, by

2L

L . ' A
5T sin @n(yl,®01) a! = sina (3.67)

0

one obtains after simplification of the above that

dAn(O) 2n2(uo/von)(Z

[ Zonr 2/ n } onr/[Zo |>
-2 ——— inb + = = =~ = sin o
dy n <: 201[ > C C n

1 1

or
dAn(O

) z
onr .
iy = n < TZ—T> sina_ . (3.68)
1 o1
5. Beam bunching is specified in terms of

® (0,0, ) = @ ; (3.69)

1,d on,J

where j = 0,1,2,...,m denotes a particular charge group of electrons
injected into the interaction region. For an unbunched stream input
the charge groups are uniformly distributed in phase over one cycle

of the RF wave at y = O. Thus for an unbunched stream
1

®n,j = m (3.70)
6. Equation 3.9 gives an expression for the electron velocity.

At the input plane the RF velocity of the jth charge group is given by

u(0,®01,j) = 0 (3.71)

for an unmodulated stream.
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In order to obtaln a solution to the large-signal equations the
following input data must be given.

1. n, the harmonic number to be considered.

2. Cl, the beam-"circuit" coupling parameter for the fundamental
RF component.

3. bl = (l/Cl)[(uO/vol) - 1], the injection velocity parameter
for the fundamental signal.

Von/vol’ a normalized velocity ratio for the phase velocity
of the nth harmonic RF wave.

5. Zonr/lzoll’ the normalized real part of the interaction
impedance.

Zoni/lzoll’ the normalized imaginary part of the interaction
impedance, if plasma collislons are included. Both the real and
imaginary parts of the impedance are calculated for a solution of the
dispersion equation, which is a separate program.

7. vcﬁb, the normalized beam-plasma collision frequency.

8. B = 7b', the space-charge force range parameter, where ¥ = B
is the radial propagation constant and b' is the electron stream
radius.

9. wbﬁw, the normalized plasma frequency for the beam electrons.

The method of solution and the results obtained will be discussed in

Chapter V.




CHAPTER IV. TWO-DIMENSIONAL LARGE-SIGNAL BEAM-PLASMA ANALYSIS

4.1 Introduction

From traveling-wave tube theory it is known that the radial
variations of the circuit and space-charge fields tend to reduce the
gain and the conversion efficiency. It is therefore desirable to take
these effects into account theoretically in order to obtain better
agreement with experimental observations. In this analysis the plasma
"eircuit" equation will be considered to be quasi-two-dimensional in
nature. The circuit field term will be used directly from the one-
dimensiconal analysis described in the previous chapter. The radial
variation in the electric field will be taken into account by defining
a weighting function which is proportional to the radial variation of
the longitudinal electric field. It will be shown that for the
frequency range of interest the effective circuit field at the electron
stream is reduced from its value at the plasma edge.

Since the electron density and hence the plasma frequency in a
typical electron stream used in amplifiers of the type considered in
this study is very much less than in the plasma, the electron cyclotron
frequency due to the applied magnetic field needed to focus the stream
is usually considerably greater than the plasma frequency of the beam
electrons. Thus many analyses assume to a fairly good approximation
that the magnetic field is infinite as far as the beam electrons are
concerned.®’ This in effect neglects the transverse motion of the

stream electrons. In the present analysis this restriction will not be

_85_
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made, and the electron stream will be treated essentially in two
dimensions, i.e., the circuit RF potential and the space-charge

potential are assumed to vary in the radial direction but are

axisymmetric. The action of a finite axial magnetic focusing field
will be included by considering electron motion, without bunching,
around the axis. This inclusion of the magnetic field does not
complicate the equations unduly; it merely introduces the angular
velocity u@. The coordinates of the model to be considered are
shown in Fig. 4.1 and the analysis follows that of Rowe.*®

The normalized independent space and phase Lagrangian variables

are defined as

A Clcoz
vy, = = EnClNS s (4.1)
0
C or
A
x = 2=, (k.2)
o)
C wr
A 170
x, = = (+.3)
e}
and
wz
A o
@Ol = a‘(—)—— = -(Dto B ()+)+>

where T is the mean radius of a charge ring at z = 0 and the other
quantities are as defined before. The RF voltage of the nth harmonic
along the interaction region is written as the product of slowly

varying amplitude and phase functions. Thus

S ZOJ_IO _j®n+jexn
Py w0y) = me ) (B a0 ). )

n=1i



_87-

ELECTRON STREAM

PLASMA COLUMN

FIG. 4.1 MODEL FOR AN ELECTRON STREAM PASSING THROUGH A PLASMA

COLLUMN.
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where it is assumed that exn is the radial phase shift and

ny
o = 0 (y,x,0 ) = f -t - 6 (y.) (4.6)
or
Cl
v, 2 (0 gt o) ) (.7)

The quantity wn(x) of Eq. 4.5 is proportional to the radial variation
of the longitudinal electric fileld across the plasma column. At the
edge of the plasma column, r = b, one may choose by an appropriate

normalization that

v (b) = 1 . (4.8)

k,2 variation of the Electric Field Across the Plasma Columh

The longitudinal electric field variation inside a plasma

column of uniform density is gilven by

E (r) = AJ (T r) , (&.9)

n o' pn

which has been obtained previously. Here JO is the zero-order Bessel
function of the first kind, Tpn is the radial propagation constant for
the nth harmonic and An is an arbitrary constant. Recall that the
radial propagation constant is given by

. \2 -
i (=)
nw

1 [ ———.

2 2 ®ll 2 <1 - L>
T = -k — = -k . (+.10)

i R X (‘2)(1‘*3@
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Solution of the dispersion equation for a plasma column yields the

w-B diagram shown in Fig. 4.2. The cyclotron freguency is chosen to

be below db because in a typical device operating in the 10-cm wave-
length region a magnetic field ranging from a few hundred gauss to at
most one kilogauss (fC ~ 2.8 GHz) is usually adequate for focusing the
electron stream. For frequencies in Regions I and II of Fig. 4.2 a
forward wave can propagate along the plasma column so that a traveling-
wave tube type of interaction may take place between the wave on the
plasma column and the electron beam space-charge waves. For frequencies
in Region IV a backward wave can propagate along the plasma column,
which may result in backward-wave amplification or backward-wave
oscillation in the presence of an electron beam. The plasma waveguide
is cut off for frequencies in Region'III and does not support a wave.
The dielectric constant is negative in this range. Therefore the

plasma presents an inductive impedance to the electron beam. The
electron beam traveling through the plasma column acts in cooperation
with the plasma "circuit," which alone cannot support a propagating slow
wave. Thus any charge bunching on the beam 1s enhanced, as in a

8 amplifier. This enhancement

multicavity klystron or in an Easitron®
takes place through the induced charges formed in the plasma by the
alternating fields of the modulated electron beam. The beam electrons
are slowed down by the fields of these charges giving up some of their
energy.

Solution of Egs. 4.9 and 4.10 shows that Ezn has the distributions

shown in Fig. 4.3 for different values of w. In the region between the
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FIG. 4.2 DISPERSION CURVES FOR A PLASMA COLUMN.
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plasma boundary at r = b and the conducting wall at r = a the fields
go to zero exponentially in all cases, as shown. In the plasma region
the field distribution is uniform for Tpn = 0, which occurs at ®, = no.
By Eq. 4.10, for v = 0 and k = B, Tpn is either a positive real or a
positive imaginary number. For<Tpn real the RF field is highest along
the axis of the plasma column and decreases as the Bessel function JO.
This corresponds to Region I of Fig. 4.2. If Tpn is imaginary, the

RF field is lowest along the axis and increases as the modified Bessel

function, IO, due to the fact that
Jo(ngnr) = IO(Tpnr) . (4.11)

This corresponds to Region II of Fig. 4.2. The wave propagating along
the plasma column in this case is known as a surface wave, which has

a resonance (B — ) in the range

w2 + mﬁ
o < o < N (4.12)
¢ 2 ’

as was discussed in Chapter II. The resonance frequency in this range
is determined by the geometry and the effective dielectric constant of
the material surrounding the plasma column.

If the electric field distribution across the plasma column is
known, it is straightforward to determine an appropriate field weighting
function, wn. For the case of a solid electron stream with radius rml,
equal to or smaller than the radius b of the plasma column, the

weighting function taking account of radial circuit field variations is
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denoted by Wn(rml). Normalizing with respect to the electric field

at the plasma column edge one obtains

JJi(T r l) + J3(T_r )

_ prm 1 pn ma
1ljn(rml) = J (T b) . (4‘l5>
o pn

On the other hand, for a thin, hollow electron stream with mean radius
roo < b, the weighting function taking radial field variations into

account is denoted by

J(T r )

‘o' pnmg _
Wn(rmg) = —ESTT;;ET_ . (k1)

In the analysis to follow the appropriate field weighting function,
Wn(rm), given by Egs. 4.13 or 4.14 will be used. Note that Tpn and

hence Wn must be found through a solution of the dispersion equation of

the plasma column for the harmonic number n of interest.

L.3 Derivation of the Circuit Equations

A dependent axial velocity variable is defined as in the one-
dimensional case. Here, however, radial and angular veloclty variables

are also needed. Thus

dz uo dyl A
Y, T & T Cto a - Yo (? * 2Cluy(yl,xo,®01)> ? (+.15)
1
dr Y5 oax A
- —_— = —— e = )'{h’
Uy dt Cw dt 2Cluoux(yi,xo,®01) (k.16)
1
and
. 4 4 L b1
Ypr T Gt~ chuo T uCp(yl’xo’q)o:L) ' (4-17)
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From Eg. 4.15 it follows that

dyl wa az
T C T i - C <? + ECluy(yl,XO,®01)> . (%.18)

Also, from Eq. 4.7

a 6 a4 )
v Cl a n W 0] dyl
dt T n

1 n
m,o® Ty, ® ) (+-19)

Equating Egs. 4.18 and L4.19 one obtains

n 1 n 1
2 =
Clnau dy dt * oy dt ~’
1 1
or in view of Eq. 4.18,
d@n a@n
2C nwu,_ = — + Cw(l +2Cu
1y _dy Syl 1 ( 1 y>
After simplification,
den(yl) . BQH(YlJXO)(DOl) B gnuy(yl’xqu)o_l) (u 20)
da R) T 1+ 2C ) ’ .
v, v, ECRENTNY

This expression is one of the working equations in the two-dimensional
large-signal analysis.
The dependent variable x is a function of y X and ®Ol. A
1

general expression for x may be written as




dz
. ,  (k.21)
u [T+ ecluy(yl,xo, 2,01

which becomes, when Eq. 4.16 is substituted under the integral sign,

y
1
0y W,
x(y ,x ,0 ) = x_ +2C . (L.22)
1707 o1 o) 1
0 1+ gcluy(yl’xo’®01>

u x ,0
X(yl’ o’

Equation 4.22 constitutes another one of the working equations.
The charge Py entering the interaction region is conserved
throughout so that for any point (z,r) the continuity of charge equation

becomes (axial symmetry is assumed)
pr dr dz = P T dro dzo . (4.23)

Define a linear charge density o at a given position z by
b!
o = 2x Jf ¥ (b")pr dr , (h.2k)
n n
0

where b' is the radius of the solid cylindrical electron stream
considered herefand wn is given by Eq. 4.13. By Eq. 4.23 this can
be written as
az

o

dz

ar (k.25)

O

bt
o) = 2 t
n % u/\ Wn(b >poro
0

where the entering dc charge density Po is given by

For a discussion on the appropriate radius to use see Sec. 4.6,
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I
o
P = - — (4.26)
© At

o}

The quantity lazo/azi represents the electron phase displacement and

is written as in the one-dimensional case as

azo
azo_"a“a
L3t
From Eq. 4.15
oz
SN G ECluy(yl,xo,QOl)
Also, note that
dz dz o0 o0 00
o _ 0 01 no_ o, 01
5t 5 . 3 3t - Yo" 30
01 n n

Thus the electron phase displacement becomes in Lagrangian variables

30

01

REPY
n

dz
)
Sz

n
) (4.27)
1+ 2Cluy(yl,xo;©01)

Substituting Eq. 4.27 into Eq. 4.25 and simplifying

2T ol
o - f ,
n b'2

Defining a normalized stream radius by

C wb!
< = - s (4.28)

o}

¥ (bh)r
1 + EClu (y R )
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and making use of Eq. 4.3, one obtains

X

2T n b S0
n > B(I)
XY 0 n

t
Wn(b )%, &,
1+ 2Cluy(yl,xo,®Ol)

(4.29)

The linear charge density may be expanded into a Fourier series

of the phase variable @n. Thus

o(z,r,t) = j;: <%n sin(-@n) +d cos(—@ni> s (4.30)

where the coefficients <, and dn are given by

2xL b!
R ' .
c, = oI Jf JP Wn(b )on(z,r,®n)51n(-®n)r dr d®
0 0
and
2nl, b'!
- L ' -
d, = o3 h/j L/“ wn(b )cn(z,r,Qn) cos ( ®n)r dr de
0 0

If these coefficients are substituted into Eq. 4.30, one obtains

o 2qL b'!
g (z,r,t) = }: H%E [( Jf JF Wn(b')cn(z,r,Qn)sin(-Qn)r dr d®é>
n=1 0O O
2xL, b
sin(-@n) + < Jf JF wn(b')cn(z,r,Qn)cos(—®n)r dr d@%) cos(—@n)]
0 0

Since cos(—@n) + 3 sin(-@n)'= exp(—j@n), this expression may be

expanded and then simplified to yield
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2L b!

o(z,r,t) = Re[ Z e < f f v, (b')o (z,r,
n=1
27l b'
3 1
sin ® r dr d0_ + u[\ U/\ wn(b )cn(z,r,Qn)cos o r dr d@é)]
o] 0

Substituting from the conservation of charge equation, Eq. 4.29, one

obtains

o1, *

E: e-3® < /« /w w (b')cos @ x dx ao 51

= ] !
n= 0 L 2Cluy<y1’xo’®ol)

o(z,r,t) = -Re [

nLu x

=]

]

"o : :
/“ W (b')sin @' x dx d@ol >1 )

1 +2Cu (y ,x', )
1y 1

2L

-

@'
o’ o1
where the prime denotes the variable of integration. Note that Eq. 4.31
may be written as

= -+ i
o o, Ccos® +o sind® (k.32)

where X
2
21 bl enl v, (b')cos o X, ax! ag!
o o o1

6 = .o f (4.53)

ne 2 o t @t

du x5S 1+ 2Cluy(yl,xo,®01)

and
X 1
2
EIO bt enl s (b')Sln @'x dx' d@é

Gns = - 2 [ . * ()4"5J+)

du X 5 1 +2Cu(y,x'®')

The "circuit" equation which describes the RF voltage variation
along the equivalent transmission line may be written in general as

follows:
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3%V (z,r,t) 7 0% (z,r,t)
FV_(z,r,t) - L 2 = - n . (4.35)
n Vin dtZ Von ot=

The first term on the left-hand side for the present case, because
of the quasi-two-dimensional treatment, simply becomes BZVn(z,r,t)/Bzz.

Thus Eq. 4.35 is

BZVn(Z,r,t) B BZVn(z,r,t) . Zon Bzcn(z,r,t) 4. 36)
dz% Vin dt2 Von Jot%

The potential function was defined in Eg. 4.5. From Eq. 4.6 one

finds that
a0 (y X _,0 )
n 1ato 01 - -1 (ll'B'T)
and
0,y »x00,) ) as (v, ) 4 .38)
Jy T c dy ’ :
1 1 1

The following derivatives of Eq. 4.5, which may be simplified by
Egs. 4.37 and 4.38, are needed for substitution into Eq. 4.36. Note
that exn = 0 for the quasi-two-dimensional treatment of the circuit

equation.*

A (r ) -je,
— v, (ple - A (v )V, (b)

a6 -30
® __ny_ "n
) <'u dz
o

For a discussion on the appropriate form of the weighting function
see Sec. 4.6,

QA
Q/
M=
It
N
Q| O
'._I
[
Qo

o]

o)
r\/jg
|

]

, o (4.39)

L
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7 I = d® (v) -3 aA (y )
2% erop, ) | By e R -y —2 0y ()
dz% 1 ne1 dz®
w den 'an d29n -an
(&) M A e A )
<~ 0 dz
w den —2 _j®n
'(a“a‘z— e ] , (4.k0)
~ O -
7 I - -j0
?TZ_., — —Q%—ERG Z‘ <jnmAn(yl)llln<b)e n> (4.41)
1 n=1
and
32y 7z I - -3
R et ) (s, w00 ") (. 42)
n=1

Note that the above expressions are valid at the plasma column edge.
The right-hand side of Eq. 4.36 requires the second time derivative

of the linear charge density. From Eq. 4.32,

dag

5%2 = nwo . sin @n - o, o cos @ (4.43)

and

d3g
n 2 2

-n®w?__ cos & - n%w®c__ sin ©_ . (b.hh)
ne n ns n

11

2
Substituting Egs. 4.40, 4.42 and 4.44 into Eq. 4.36 and rearranging,

one obtains
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§ o { S oo [£02) - (5- 52 e,

a% (y,) , ) <d9n(yl) ] n_>] -
C sin n

v, (b) [:An(yl)n —+ 3y "

[~TJe

n=1i dyl 1 1 t
12
< < > ' 2 ¥ (b')cos @'x! ax! ao!
on' [ON X
= < J[‘ Jf cos @n
n=|1 7l.C xb, 1+ 2C u(y x1,0! )

Xb, 2
; v, (b')sin o'x! ax! dao!
0l .
sin @ )

ST
A 1 1

0 0 L 2Cluy(yl’xo’(DOl)
Equating the coefficients of sin @n and cos @n separately on each side
of the equal sign and noting that Wn(b) = 1 by Eq. 4.8, one obtains

the following two circuit equations:

M+An(yl)[§<%>2 -<rcl—l“-d—e§g—l‘)—>2]

dyf

“on .
< > ( :> bt 2l v (b')cos @'x dx! das!
(k.h5)
1+ 2C Uy (y x50 )

i

LC X O o

and
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2
() a=e (y,) . s ar (y.) <d9n(yl) ) n_> _
ni dyf dyl dyl Cl

on -

u Z
2 o) on .
en <v > <Z01> ' 2 v (b')sin 0'x! ax! 40!
- oL (h.46)

2 v v 1 1
+
LC X, S 1 2Cluy(yl,xo,®01)

These are two more working equations in the large-signal analysis. It
should be noted that the left-hand sides of Egs. 4.45 and 4.46 are the
same as in the one-dimensional case, while the driving terms on the
right-hand sides are changed due to the modified coupling of the

electron stream in a radially varying electric field.

L.4 Derivation of the Force Equations

The Lorentz force equations are to be formulated now so as to
include the effects of the electron stream and the space-charge forces
within the stream on the waves propagating along the plasma column.

As usual, low enough velocities are assumed so that relativistic
effects are negligible. Hence RF magnetic fields need not be
considered. 1In this two-dimensional analysis angular bunching of the
beam is neglected, but the action of a finite axial magnetic field 1is
included.

The various components of the Lorentz force equation are written
as follows 1f the magnetic field, Bo’ is assumed to be entirely axially

directed in the RF interaction region:

425 ov_.(z,r,t) . A o, (257,8) 447)
e N dz oz ’ :




2 oV (z,r,t)
dcr g@ > N <‘ nsc-r 7’ ae
a2 - <:dt p = ;Eo-r * or - Bor at (k.18)
and
L d_ P2 dCP
- > odt . (4.149)

Eo-r represents the radial field due to the dc space-charge. From a

solution of Poisson's equation in cylindrical coordinates it may be

found that 5
Eo-r - Eg—' ;9
0
Thus, e e
B, - i 2, (. 50)

where W, is the plasma frequency for the beam electrons. Introducing
the normalized variables y and x from Egs. 4.1 and 4.2 and defining
1
A
the cyclotron frequency by W, = nBO as before, the force equations

become

O 1

2 2 2 *
a3k de Cl 1 ab Xo uo Cfb wc do
N at = T\"%. 72 X Co u nse-x _ n ~dt
dt2 ~ O 1
and

1 a 2 dx

= = . D = = i)

ot oo ¢ ucp> e Tt
*

There are no additional terms in the radial force equation because
of the guasi-two-dimensional assumption. See Sec. 4.6.
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Note that

dzyl av, dov_ dy

at? 1
which, in view of Eg. 4.15 becomes
aZy du_ dy
1 22 1
Cfb Eyl dt

Substituting from Eq. 4.18 for dy /dt yields
1

at®

d2y s o ou
L = 2c% 1 +2Cu . 4.51
" X 5—¥yl ( 5y (k.51)

Similarly one obtains

ou
a%x 3 o X
_— = 2 o . .
Cfn ayl (1 + QCluy) (4.52)

Using the last two expressions, the force equations take the following

form:
s s du C 2 Bth(yl,xo,QOl) C
2C1(D Fyl (1 + ECluy) = 1 <u > Sy -1 <1'1'-—> Ensc-—y »
1 o 1 o
Bux c42 5 w§ xi
S + 2 = 4 L o =2
2Clw Sy (1 Cluy) = Y T3 %
Cfb =)
-0 < q) EnSC'—X - &DcclquP )
3,2 Bug dx 2 ax
2Cw 1 +2Cu = = _ 208 ax
1 ayl ( N y> ®dt T X C;mq@ at

Rearranging and substituting from Eq. 4.39 for (BVnc/By ) one obtains
1

the following:




-105-

;;& 1+ 2Cluy) = 1 > 2 [ ‘lf (b')cos @

2
1 2uOC1
n den ] 1
- ' — O — i T S———————————
An(yl)wn(b ) < C, dyl'> sin CI)n_, 5020m Ensc-y ’
10
ou 2c 2 x2 ®
X(l+2cu) =___l.u2+ a_).kl _]‘_._2____3___]3 _.._C..u
gyl 1y x O @ ned ¥ 002y, — BSCX Cf» (W)
1 1 .
and
ou ® 2C%w
8—9-(1 +2Cu ) = = %%-— —L— %%-uw
yl 1y 202 20%0%x
1 1

The space-charge field terms for the two-dimensional case are derived

in Appendix C. They are

I
o o _ 1 1 1 1
Eseey = U/\ < oy sen(y, yl)Fg_Z d®0;> x! ax!

o' b
(+.53)
and 1
P &I
ST g (= S IO PR
nsc-x , wlrle x%2., 27T o1/ "0 o
0 0 o™ ¥ p%p !
The two-dimensional space-charge field welghting functions are
defined by
= vy vt T (v xt)T (v,x)
A £'91 Y2 o' £ o' [
Pz = z e (+.55)

P [7, (v,x)]2

and
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npe>

= vy -yt g (v x )T (v x)
Z . A 2 1\ g (4.56)
£=1

[7 (v,x)1%

Equations 4.53 and 4.54 may be substituted into the force equations,

which then become

du, z I, ii aa_(y_)
_ IS 1 _ 1
yyi (1 + ) = 1= ) [ & o(br)cos & - A (y v, (b")
1 2u=C 1
0’1 n=1
X 1
ae ! CEwI b 2al.
B _ 2 Jsin o ] + 9 1 0 JP (: /“ sgn(y -y')
C dy n 2 2 2 "
1 1 2Cludw uOnLeoxsxb, o 5
F 49! x' ax!
o-7 01 o) o ’
o 2C w 2 x°
x _ ae (Ze ) 1 %
r—(1+20u) = X Y% <C>u®+<w>ucsx
1 1 1

u CEwI
0 10 . ' .
+ F do x! dx
2 . 2-r  Oi o o

2 2 2
2Cludw uOnLerbxb,

0 0
and
Bu® w, i 1
2 = - oo 2
55—-(1 + Cluy) = EwagX oo 2C%awu
1 2Cld) 1

After further simplification one obtains the following final forms

of the Lorentz force equations:




-107-

ou (v ,x_,? )
y\1’"0’ To1
55 (l + 2Cluy(yl,xo,®ol)>
1

i

2 aa (y.)

t n-"1
% [clwn(b ) —ay o ¢os e
n=1

1

ae

2
~a v ) (n-c =2 ) sin @n] o1 <‘°_g>
1 1l yl 2C2LX.§ w
1
v 2al
— ' H L []

[ < f sgn(yl yl)Fz_z d®01> x! dxo ,  (4.57)
0 0

du, (y »X_,0 ) 20

X1 07 01 . _ .
57, (1 +zcluy(yl,xo,®01)> = 3 Ul x0)

2 2 2
L1 ?2>u( x ,0 ) + o 1 % 1 (D
- Cl o /)% yl; o’ “o1 " X

3 2, .2\ ®
ltcl ECleb
ot 2gL
H 1 1
f < .,[ Fz—r d(1)01> x5 4%, (4.58)
0 0
and
ou (y ,x ,® ) W
©*W1’ 0’ o1 - 1_(_c
- (rveemonge,)) = 2 (2 ) nmgt)
1 1
2¢
1
- ux(yl’xo’®01)u@(y1’xo’®ol> . (4-59)

It is possible to obtain a simpler form of the angular force

equation from Busch's theorem.®® It was assumed above that the

magnetic fileld Bo ig entirely axially directed throughout the inter-

action region. If the magnetic field at the electron beam cathode of

radius r, is BC, then one may write




T
2dp _ e 2, _ _0 =2
mro dt 2% TP 2 anBC >
or
: 2 2
W r r B
do c < o] C c >
® . -2 L ) (+.60)
dat 2 2 2 BO
o)
If one defines
2
r B
k/z & & & (4.61)
2 B
r o
o
then
2
w r
@ _ &y . L yr/2
at - 2 <1 =" > - (k.62)

Combining Eqs. 4.17 and 4.62 the following angular force equation is

obtained:

2C u ®» X 2
1o 1 /e _( _© /2,'
" = 2C1<‘“ >[1 <x > Kt |- (4.63)

For the special case of constant magnetic field everywhere (immersed
flow) K = 1. TFor shielded Brillouin flow, for which

nB

@ _ _o°
-2, (h.64)

there is assumed to be no magnetic field at the beam cathode and K = O.

If a fraction of the focusing field threads the cathode region, the

beam electron trajectories ripple in going through the interaction region.
In practice this problem is overcome and balanced flow is obtained

by increasing the focusing field above the Brillouin value and placing

a bucking coil around the gun region so as to reduce the fringing field.

In that case
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K = 1-2<§-E->2 . (4.65)

Solving Eq. 4.63 for ucp and substituting into Eq. 4.58, one obtains

the following simplified form of the radial force equation:

BuX(y %502 ) X ©e = %
5 l<1+2Cu(y,x,® ) =——<———> 1-(—-—)
y 1y "1 O o1 8p2 \ @ X
1 1

@, 2 . 2 @ 2 p 2L,
w2 () (2)] -2 () [ ma)x e
\ 201Xb 6 6 v

(4.66)

4

4.5 TInitial Conditions and Input Data

In the two-dimensional case it 1s in general necessary to solve
seven equations (Eqs. 4.20, %.22, 4.45, 4 b6, 4.57, 4.58 and 4.59) in

seven unknowns. The seven unknown guantities are the dependent

variables An<y1)’ 9n<y1)’ @n(yl:xoy@ X, uy<y1’xo’®o ): ux(yl’xo’i) )

01)’ o1

1

and u@(yl,xo,Qol). These are given in terms of the independent

variables y , X, and @Ol. The equations are solved just as in the
1

one-dimensional case. It is again necessary to specify the initial

conditions on the dependent variables. Thus at yl = O the following

conditions are required:

1. An(O) = A - (4.67)
2. en(o) = 0 . (4.68)
3.
den(yl) n <uo > b <Zonr >l/3 (4.69)
—_— = - 0= -/ - = =n T———T . .
dyl s =o ul VOl n ZO_]_ ,
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A (v.)
n 1
k. 5 = 0 , (4.70)

=0
1 yl

for an unbunched stream. For a stream bunched in the longitudinal

direction, but with negligible bunching in the radial direction,

dA (v.)
dy

1 yl

Z
= n onr :> sin o, (k. 72)
-0 < IZOlI )

where an is the injection phase angle defined in Chapter III.

2nj .
o= TG =one, W), (k.72)

>- Qn(o’xo’®01
where j denotes a particular charge group and the stream 1s unbunched
so that the charge groups are injected uniformly distributed in phase
over one cycle of the RF wave. Other distributions may be specified
when taking prebunched streams into account. In the two-dimensional
analysis one must not only take the entering charge per ring as

distributed over @n into account, but one must also consider layers

or rings of charge.

6. uy(O,xO,QOle) = 0 , (4. 73a)
ux(o,xo,®01,j) = 0 , (k. 73b)
um(o’xo’Qol,j) = 0 (k. T3c)

These expressions state that the RF velocity components of the jth
charge group are zeroc for an unmodulated stream.
As in the one-dimensional case, the input data consists of n,

1 .
C bl, Von/VOl, Zon/IZOl}, 7b ' and wb/m. Here, however, the axial

l,

magnetic field must be specified in the form of the normalized cyclotron




-111-

frequency, mcﬂm. In addition, the equivalent circuit radius must be
given by b/b' and the radial circuit field function, Wn(b'), must be

specified.

4.6 Discussion on the Quasi-Two-Dimensional Model Used

If the full two-dimensional treatment had been used for both the
stream and the circuit there would appear additional terms in the radial
force equations following Eq. 4.48 due to the differentiation of the
circuit field expression with respect to r, and also Wn would be a
function of x in the circult equations. In that case one must use an
expression for V¥(x) obtained from the field solution and depicted in
Fig. 4.3.

As an alternative one could employ a two-dimensional treatment for
the stream but subdivide the stream into layers and use that value of
¥(r) that is an average for that layer. One would then have to assume
that the radial positions of the layers do not appreciably change during
saturation. This is probably justified as long as the device is operated
with a magnetic field greater than 50 percent above the Brillouin field.
In practice this is usually the case.

As a third alternative one could take an effective value for the
field across the beam in accordance with Eg. 4.13. The same
restrictions as in the previous case apply. This case was carried

through in the derivation of the equations of this chapter.




CHAPTER V. SOLUTION OF THE LARGE-SIGNAL EQUATTONS ON A DIGITAL COMPUTER

5.1 Introduction

Due to the complexity of the large-signal equations derived in
Chapters III and IV, it 1s necessary to solve them on a digital computer.
The two circuit equations for each harmonic can be used to eliminate
the voltage amplitude in favor of the phase variable. The force
equations and the velocity-phase equations allow the calculation of
the electron velocities and the phases. Once the phases are known,
the amplitudes can then be calculated readily.

Since the wave amplitude at the end of a beam-plasma interaction
region is not a priori known for a given input signal, this large-signal
analysis is treated as an initial value problem. The working equations
must be written indifference form to be suitable for machine computation.
A set of discrete ®01,j are chosen so that they represent the entering
phases of a set of representative charge groups at the beginning of the
interaction region. Numerical integration then proceeds in the
y~direction in finite steps.

An important factor that affects the accuracy of computation and
the execution time is the magnitude of the integration increment Ay.
This quantity must be chosen to be small enough so that the change of
any signal quantity over Ay is small. A difficulty with very small Ay
is that in addition to increasing the computing time the round-off error
increases due to the increased number of iterations and the limited

number of significant figures used in the computer arithmetic. For

~-112~
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the results to be presented in the present chapter a value of Ay = 0.01

was found to give reasonable accuracy.

5.2 Solution of the One-Dimensional Equations

The working equations for the one-dimensional case are Eqs. 3.16,
3.32, 3.3% and 3.40. If plasma particle collisions are to be included,
the circuit equations, Egs. 3.32 and 3.33, are replaced by Egs. 3.59 and
3.60. The phase velocities and the impedance values occurring in these
equations are known once the appropriate dispersion equation of Chapter
II has been solved. The initial conditions and the input data required
to solve the large-signal equations are listed in Section 3.5.

It should be noted that in a practical situation only a finite
number of harmonics can be included in the analysis, due to the finite
number of charge groups (500 in this particular case) distributed over
phase that can be tracked through the interaction region. Thus in the
working equations the summation is terminated at a value in accordance
with this restriction. In particular, the one-dimensional program was
set up to handle a fundamental input signal and up to three harmonics.
Beam space-charge effects were not included in the one-dimensional case.

The experimental work of the present study to be described in
Chapter VI was conducted in the L-band and S-band frequency regilons.

In order to insure that the calculations are useful for later comparison
with experiment, some of the parameters needed for the computations will
be calculated here and listed below in tabular form.

The fundamental RF frequency was chosen to be 1.7 GHz and the

electron cyclotron frequency corresponded to a reasonable axial magnetic
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field for focusing the electron beam. For the particular beam optics

to be employed, BO > BBr’ where the Brillouin magnetic field is given

by69

1/2 i/2
B, = < EIO > _ 8.5 - 10-4< T > (5.1)
Br b'2ﬂﬂ3/2€ VR;“ bt VRZ;

¢] o}

In the present case BBr = 200 G. The effective dielectric constant of
the space between the beam or the plasma column and the surrounding
metallic cylinder determines the value of Ko It was chosen to be

2.0 for the present calculations. The plasma frequency was measured
or calculated, as described in Chapter VI. There was no way of
measuring the collision frequencies either directly or indirectly;
hence they were calculated as follows.

The collision frequency between electrons and heavy particles in

the plasma is given in rad/s by
v
v o= 23'[5\— P (5.2)

where v is the average electron velocity and Ke is the mean-free-path

_ J BRTe
Vo= W = (5.3)
e

for a Maxwellian velocity distribution.”® Here Te is the electron

of the electrons.

temperature, m, is the electron mass, and k is the Boltzmann constant.

The electron mean-free-path is given by7o

N, = N2, (5.4)




~115-

where A is the mean-free-path for the background gas particles when a
hard-sphere collision model 1s assumed. For example, in xenon at 50°C
and a pressure of 1.10 2 Torr, A = 6.61 cm. Thus A, = 37.% cm. In a
magnetic field of a few hundred gauss the plasma electron temperature
was measured to be approximately 15,000°K. Thus v = 7.6°10° m/s. These
values yield a collision frequency of 2.03 MHz in the plasma. In the
absence of a magnetic field or for a slightly higher pressure this value
could be somewhat larger. The effect of collisions in the plasma column
may therefore be expected to be quite small for the range of parameters
applicable to the experimental work of the present study.

The effect of colligions due to the beam electrons may be shown
to be substantially larger, however. TFor beam electrons above several
hundred volts the probability for an elastic collision is considerably

7% Thus for beam electrons at

less than for an ionizing collision.
520 V (uo = 1.35.107 m/s) and a beam current of 8.8 mA passing through
the xenon plasma at a pressure of 1-107° Torr the collision frequency

is estimated to be 6.4 MHz. Thus vcﬂns = 0.00376. Inspection of the
force equation, Eg. 3.40, reveals that the term containing vcﬂws may
not be expected to be negligible due to the presgnce of the 1/Ci factor.
Since Cl is ordinarily in the order of 0.1, the collision term in the
force equation is in the order of unity, which is comparable to the

magnitude of the other terms. Table 5.1 lists the parameters needed to

specify the input to the large-signal program.
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Table 5.1

Plasma Device Parameters

Silgnal Frequency, fS = ws/2ﬁ 1.7 GHz

Ko 2.0

Outer Shield Radius, a 0.952 cm

"Circuit" Radius, b 0.152 cm

Beam Radius, b' 0.125 cm

Magnetic Field, B_ 260 G

Electron Cyclotron Frequency, fc 728 MHz

mcﬁbs 0.428

wpﬁns 2.49

Plasma Frequency, fp 4. 2k GHz

Pressure 1-107° Torr

Mean-Free-Path for Xenon 6.61 cm

Plasma Collision Frequency, V 12.7-10° rad/s

Beam Collision Frequency, Vv, 40.7-10° rad/s

vﬂns 0.0012

vcﬂms 0.0038

The interaction impedance values for the fundamental and the

first three harmonics were calculated from the above data and the

solution to the dispersion equation. The results are shown in

Table 5.2.
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Table 5.2

Equivalent Circult Impedance Values

zOlr = 340 Q Zo;Li = -11.3 Q
2oy = 175 Q Zopy = -5.820
Zogr = 103 O Zoai = -3.h2 Q

our = T Q Zoyi = -2.46 @

In Fig. 5.1, the variation of some of the important parameters
for a beam-plasma amplifier in the vicinity of the signal frequency is
shown. The gain parameter, Cl, is 0.11% at 1.7 GHz for the above
conditions. The plasma characteristics are assumed to be so adjusted
that beam-wave synchronism (bl = 0) occurs at 1.7 GHz. From one-
dimensional linear traveling-wave tube theory71 it may be expected that
gain occurs between bl = ~-1.5 and bl = 2.5. This corresponds to a
frequency range of 1.44 to 1.94 GHz, as shown in Fig. 5.1.

The one-dimensional program was written in Fortran IV and was
solved on an IBM 360/67 digital computer. A typical run with one signal
present required an execution time of two minutes, if 16 charge groups
distributed over phase were injected into the interaction region. A
four-signal run usually required 64 charge groups for reasonable

accuracy and a computing time of approximately 8 minutes.

5.5 One-Dimensional Results

5.35.1 No Collisions. Figure 5.2 shows the voltage amplitude

and the power level relative to ClIOVO\along the beam-plasma interaction

region when only one signal, the fundamental frequency, was assumed to
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interact with the beam space-charge waves. This, as well as most
subsequent one-dimensional results, applies to a beam voltage of 520 V
and a beam current of 8.8 mA. The plasma column is assumed to be
generated by the electron beam, which corresponds to a large portion of
the experimental data to be presented in Chapter VI. The input level
of the fundamental signal was normalized with respect to the beam power
and was almost always chosen to be 30 dB below ClIOVO. This value
corresponds approximately to the gain obtained in the beam-plasma
interaction and therefore 1s convenient for comparing the saturation
lengths of the various theoretical and experimental cases. Figure 5.2
shows that the device saturates at a distance y = 6.1, or 8.75
electronic wavelengths, corresponding to an actual distance of T7.23 cm,
with a gain of 35 dB.

The initial amplitude of the harmonics could not be set
identically equal to zero because singularities would then have resulted
in the difference equations; however, the initial harmonic amplitudes
were chosen sufficiently small to have no effect on the manner in which
saturation occcurred. It was found that, if the input level of the
harmonics was at least 80 dB below ClIoVo’ the voltage amplitudes as
a function of axial distance did not depend on the initial levels of
the harmonics. Thus a value of 90 dB below ClIoVb was ordinarily used.
In Figs. 5.3 through 5.5 the results for conditions identical to those
for Fig. 5.2 are shown, but with harmonics through the second, third
and fourth, respectively, assumed to be coupled out of the device. Note
that the presence of higher harmonics reduces the amplitude of the

fundamental because a fraction of the beam power converted to RF power
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is converted into harmonic power. For example, the figures show that
the presence of three harmonics reduces the power level in the
fundamental signal by approximately 6 dB. For a uniform plasma column
calculations indicate that the fundamental and only the second harmonic
should exist, because the other harmonics are well above the plasma
frequency. In actual practice, as the experimental results show, higher
harmonics could be detected. This is believed to be due to nonuniformities
in the plasma column, such that the plasma frequency near the center of
the column is considerably greater than the estimated value of 4.24 GHz.
Figures 5.6 and 5.7 give an overview of the variation of the
maximum signal amplitudes and the saturation length as the velocity and
gain parameters are varied. These results were obtained from a large
number of computer runs. The fundamental and the next two harmonics
only were assumed to exist in the beam-plasma device. The range of
values for bl and Cl is reasonable 1in a beam-plasma amplifier of the
type useful for the present study. Figure 5.6 indicates that the
minimum distance for saturation occurs for bl =~ 0.7, even though more
power output can be obtained when a larger value of bl and a longer
interaction distance is used. ¥For values of bl > 2.0 the output from the
device falls off very sharply due to the electron stream being too far
out of synchronism with respect to the RF wave. In Fig. 5.7 the signal
level at the output decreases with an increase in the gain parameter.
This is so because the value of bl is kept fixed. If bl would be
increased appropriately as Cl is increased in order to maximize the
output, then there would be a rise in the voltage amplitude curves as

Cl increases.
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5.3.2 Effect of Beam Collisions. Figures 5.8 and 5.9 show the

voltage amplitude and the signal level of the fundamental for various
collision frequency values. Figure 5.8 is for synchronism between beanm
and wave, bl = 0, while Fig. 5.9 is for bl = 1.4, In the latter figure
an increase in the collision frequency causes a more rapid rise in the
voltage amplitude and considerably earlier saturation. This is due to
the fact that for a value of b = 1.4 the beam travels considerably
faster than the wave, and maximum gain occurs later than for lower
values of bl. The collision term in the force equation, however,
represents a slowing contribution to the velocity. Thus a lower value
of bl actually applies when beam collision effects are included,
resulting in the more rapid saturation seen in Fig. 5.9. In most of
the experimental cases to be discussed in Chapter VI, vcﬂb was between
0.001 and 0.0053.

When the fundamental and the next three harmonics were assumed
to exist in the device, the voltage amplitudes and signal levels shown
in Fig. 5.10 were calculated for the case bl = 0.8 and vc/& = 0.001.
Comparing this with the corresponding no-collision case of Fig. 5.5
a reduction in saturation gain of nearly 1 dB may be found due to beanm
collision effects.

5.5.5 Effect of Plasma Collisions. The effect of plasma

collisions on the gain of a beam-plasma amplifier when only the
fundamental signal is present is shown in Fig. 5.11. For a collision
frequency estimated to apply to the experimental device of this study

v/w = 0.0012, which yields an impedance ratio Zoli/lzoll = -0.0303.
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The reduction in gain amounts to less than 0.1 dB. Thus the effect is
very small, as was already anticipated in Section 5.2. Comparing the
case for the fundamental and three harmonics depicted in Fig. 5.12 with
the case for no plasma collisions of Fig. 5.5, the differences are again
seen to be almost negligible.

5.3.4 Two-Signal Operation. The computer program used for the

one-dimensional calculations was written in a sufficiently general way
so that not only harmonic frequencies but also fairly closely spaced
signals could be analyzed. This makes the program suitable for
maltisignal studies on traveling-wave tubes’? and similar devices.
When two signals are introduced in a beam-plasma device and the
dispersion of the plasma column is sufficiently small, intermodulation
products at mf_-nf , where m = 2,3,... and n = 1,2,3,..., (m > n), may
be generated. In addition, crossmodulation resulting in interference
between the input signals, fa and fb, may take place. These considerations
are of importance when the device is to be used in a multichannel
communication system, for example.

One of the problems encountered when multisignal operation is
to be analyzed is the increase of the number of charge groups that have
to be followed through the interaction region and the resulting increase
in computer time. This increase 1s due to the fact that the integration
over the entering charge groups has to be carried out over a complete
period of the input, which is generally longer than the period of each
single signal. For example, for two input signals with frequencies spaced
five percent apart, the period of the combined input is 20 times the

period of a single signal. Thus it was not possible to make calculations
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for input signals spaced appreciably closer than 100 MHz apart. For
the case of Fig. 5.13, where f_ = 1.7 GHz and f, = 1.8 GHz, 305 charge
groups had to be tracked through the interaction region for reasonable
accuracy. The program was set up to handle at most 500. For example,
for a spacing of 6 MHz between fa and fb, more than L4600 charge groups
would have been required. This would have made a computation entirely
impractical from a standpoint of computing time used.

The two input signals of equal magnitude shown in Fig. 5.13 were
chosen to be approximately 6 dB below the saturation value in order
to insure a short interaction length and thus conserve computing time.
Approximately seven minutes of execution time was required for the case
shown. Signal fb is seen to grow more rapidly, even though it is the
higher frequency signal, because its velocity parameter is closer to
the value corresponding to maximum saturation gain than is the case for
fa. Thus the dominance of the lower frequency signal frequently seen
in less dispersive devices, such as a helix-type traveling-wave tube,
is masked in this case. In Fig. 5.14 the lower frequency signal does
dominate, but this is due to the fact that it is approximately 6 dB
larger at the input. In general it can be said that the signal with the
largest initial strength or the most rapid growth rate is likely to
dominate, unless the circult is quite nondispersive. 1In that case, for
signals that have an approximately equal initial magnitude, the lower
frequency signal may dominate. This 1s found to be true in the
experimental part of this study, where the frequency difference between

the input signals was only a few MHz.
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5.4 Solution of the Two-Dimensional Eguations

The working equations for the two-dimensional case are Eqs. 4.20,
4,22, L.45, 4 46 and 4.57 through 4.59. The equations are solved as
in the one-dimensional case. The initial conditions and the required
input data were discussed in Section 4.5. The following additional
information is required for the two-dimensional case.

The cyclotron fregquency not only appears in the dispersion
equation in this case, but also in the beam force equations. When beam
space-charge effects are included in the calculations, the plasma
frequency of the beam electrons, fb’ is required. It is given by73

s b ()

£ = S, = B 1.8%.10 \/—V: ) (5.5)
where ID is the current density in the electron beam. For a 520 V
beam carrying a current of 8.8 mA and a beam radius of 0.125 cm, fb is
259 MHz.

In the two-dimensicnal analysis the entering electron streanm
is divided radially into three annular layers and within each layer
52 charge groups are injected into the interaction region. Because
charge groups are followed at various radial positions, the axial
velocity can vary over the beam cross section. The program was set
up to handle only one signal, namely the fundamental. Thus only Al(y)
could be obtained in the two-dimensional case; however, the normalized
RF currents, in/IO, for the fundamental and harmonics through the fifth
were computed. If IO and the interaction lmpedance at the harmonics
are known, the harmonic output power can easily be computed to a fair

approximation.
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The program for the two-dimensional case was written directly in
machine language for the IBM 7090 computer. A typical run neglecting
beam space-charge effects required an execution time of eight to twelve
minutes, depending on the interaction length. When space-charge effects
were included, the execution time for & similar run was 1‘1/2 to 2

hours. For that reason only a few space-charge runs were obtained.

5.5 Two-Dimensional Results

In Fig. 5.15 the results obtained from the one-dimensional model
are compared with those for two-dimensional theory, both without and
with space-charge effects included. The gain at saturation is
approximately 0.6 dB less when two-dimensional effects are included.
Saturation occurs at a position approximately 35 percent farther along
the device when compared with the one-dimensional case. In particular,
it should be noted that beam space-charge effects do not make a very
drastic difference in the gain and power output level, justifying the
neglect of space-charge effects in many of the calculations.

Figures 5.16 and 5.17 show the trajectories of the 32 charge
groups in each layer of the electron stream. As saturation is approached
the electrons make ever wider excursions from their radial starting
positions. Comparing Figs. 5.16 and 5.17 it may be seen that when space-
charge effects are included, these excursions are much greater due to
the space-charge repulsion forces. The line labeled "plasma boundary" is
more meaningful in a traveling-wave tube than it 1s here. Some of the
electrons of Fig. 5.17 are seen to be intercepted on the boundary.

The digital computer program is set up so that these electrons are
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removed from further interaction. In the beam-plasma amplifier the plasma

boundary position is at the effective radius of the equivalent circuit.
In an actual device wmaking use of a beam-generated plasma there is
nothing at this position except ionized and un-ionized gas particles.
Thus an electron could readily cross and recross the "circuit" line.
The two figures of the trajectory plots, as well as Fig. 5.18, were
obtalned directly‘from the computer through the use of a plotting routine.

Figure 5.18 shows the normalized RF velocity variables of the
32 charge groups in each stream layer as a function of phase with
respect to the RF wave. Beam space-charge effects were included.
Initially all electrons should be uniformly distributed over velocity
space near 1 + EClu(y) = 1. Ags RF interaction takes place some
electrons are speeded up and some are slowed down to give up a part of
their kinetic energy to the wave. TFor efficient RF amplification there
should be more of the latter. The figure in the upper left of Fig. 5.18
shows the velocity distribution at an axial position 10 dB below
saturation. The figures in the upper right and lower left are for 6
and 3 dB below saturation, respectively. At the saturation plane,
depicted in the lower right figure, it may be seen that relatively more
electrons have slowed down than have been speeded up. This means they
have given up some of their kinetic energy. If a similar figure were
obtained beyond the saturation plane, some electrons would move again to
the upper half of the figure, taking RF energy away from the wave.

The fundamental and the harmonic RF currents are shown in
Figs. 5.19 through 5.21. Figure 5.19 shows the total normalized RF

currents, while Figs. 5.20 and 5.21 show the RF layer currents
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normalized with respect to their respective dec layer currents for the
fundamental and the second harmonic, respectively. It should be noted
that each harmonic has its first peak at a slightly larger interaction
length than the next higher harmonic. There are subsequent peaks which
may be higher than the first one or even those of lower harmonics. The
significant observation from Figs. 5.20 and 5.21 is that the largest
portion of the RF currents 1s near the surface of the electron beam
until well past saturation.

Figure 5.22 shows the saturation gain and the conversion
efficiency expected in a beam-plasma amplifier over the frequency range
of 1.€ to 1.85 GHz. The effects of beam space charge are also shown.

All previous and subseguent figures, except Fig. 5.25, pertaining
to the two-dimensional analysis apply to the previously stated operating
conditions of V_ = 520 v, I_ = 8.8 mA and an axial magnetic field of
260 G, which is approximately 1.3 times the Brillouin field. Figure
5.23, however, is for V_ =570V, I_ = 8.4 mA and a magnetic focusing
field of 485 G, which is approximately 2.4 times the Brillouin field.
By comparing with Fig. 5.22 it may be noticed that the gain is not
much different but that the conversion efficiency is a few percent less.
Inspection of electron trajectory plots similar to Fig. 5.1€ reveals
that for this higher focusing field the beam electrons have smaller
excursions from their radial starting positions. With the interaction
being with the surface wave on the plasma column, the beam electrons
remain in a lower "circuit" field, and hence a weaker dc to RF

conversion results.
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In Fig. 5.2k the results of many computer runs similar to that
for Fig. 5.19 are summarized. The harmonic currents for the higher
values of n peak within a shorter interaction distance; however, all
RF currents peak before the circuit voltage amplitude does. This is
explained by the fact that saturation of the device actually occurs when
in addition to the initial electron bunch, which gives energy to the
wave, a second bunch is formed, which is in the accelerating phase of
the circuit wave, taking energy from the wave. At saturation the
transfer of energy between these bunches and the wave is balanced so
that there is no net transfer of energy between the stream and the wave.
At that point the circuit voltage amplitude has its maximum. The
current maxima, however, are expected to be at the position where the
initial bunch is tightest, which occurs somewhat sooner.

Figure 5.25 is again a composite of a number of computer runs.

It shows that the RF currents are highest in the vicinity of beam-wave
synchronism, where the tightest bunches occur. As the beam voltage is
increased above synchronism the RF current maxima are seen to fall off
markedly. This is directly connected with the explanation given in the
previous paragraph, where it was pointed out that the maximum RF current
amplitude occurs for tightest electron bpnching and not necessarily for
maximum stream nonlinearity. As Fig. 5.2€ shows, the voltage amplitude,
gain and efficiency increase with bl due to the fact that the initial
bunch can slow down more and hence give up more energy before it reaches
the optimum position in the decelerating phase, if it initially traveled

somewhat faster than the wave. When b 1is increased, however, the
1
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individual stream electrons stay out of synchronism longer. Consequently,
the bunching is not as efficient and the RF currents are not as high
for larger wvalues of bl, as Fig. 5.25 shows.

In comparing these results with those for the one-dimensional
calculations two facts should be noted. First, maximum values of gain
and efficiency are predicted for lower values of bl in the two-
dimensional analysis. This 1s attributed to the importance of radial
effects in the model analyzed. Second, the RF currents shown in Fig.

5.25 are seen to decrease as b 1s raised, while the voltage amplitudes

1

shown in Figs. 5.€ and 5.26 increase as b 1is raised. It should be noted
1

that the maxima in the RF currents do not occur at the same y-position

as the maxima in the voltage amplitudes. Thus these results are not

inconsistent with each other in view of the explanations given in the

two previous paragraphs.




CHAPTER VI. EXPERIMENTAL STUDY OF BEAM-PLASMA INTERACTIONS

6.1 Description of the Experimental Apparatus

In the theoretical considerations described so far many
simplifying assumptions were made, such as the equivalent circuit
representation of a plasma, linearity of the plasma, neglect of angular
or radial variations, and neglect of nonuniformities. The only reliable
check on the validity of these assumptions is an experimental study. To
this end a fairly versatile test vehicle was constructed and tested.

6.1.1 Vacuum System. A diagram showing the vacuum system and

the location of the beam-plasma device may be seen in Fig. 6.1. A

750 l/s NRC oil diffusion pump was used along with a Welch Model 1397
mechanical pump. A liquid nitrogen trap prevented o0il from the diffusion
pump from backstreaming into the device. A pressure of approximately
2.10°® Torr could be maintained above the cold trap. Pressure measure-
ments were made using a Varian Dual Range Tonization Control Unit. The
ultrahigh vacuum (UHV) gauge was located immediately above the cold trap,
whereas the millitorr (MT) gauge was located close to the device under
test. During operation of the device the valve located in the upper
right-hand corner of Fig. 6.1 was kept closed and gas was introduced
from the xenon gas supply and regulated by means of a Granville-Phillips
variable leak valve. Thus pressures in the range from 5-10“7 Torr to
1.10" % Torr could be maintained in the device and monitored fairly
accurately with the MT gauge. The vacuum in the electron gun region was

approximately one order of magnitude better than in the rest of the
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plasma device due to differential pumping through the small beam
tunnel between the gun and the plasma region. The stainless steel
bellows and the small copper tubing at the opposite end of the device
allowed the device to be moved slightly under vacuum for purposes of
alignment with the magnetic field. Since the beam-p;asma device was
of metal-ceramic construction, the whole system could be baked prior
to operation. 1In view of this and since the test vehicle was
continuously pumped, there did not appear to be any contamination of
the xenon gas during operation. Research grade xenon with a purity of

99.995 percent by volume was used.

6.1.2 Test Vehicle. Figure 6.2 is a diagram of the beam-plasma

device, while Fig. 6.3 shows a photograph of the completely assembled
device. As mentioned above, metal-ceramic construction was used. In
construction the metal-ceramic brazes were made first and small units
containing the gun, plasma cathodes and collector were assembled. These
are pictured in Fig. 6.4. As the final assembly step these units were
heliarc welded together.

The electron gun was & conventional Plerce-type gun with a
dispenser cathode. It could operate up to voltages of several kV with
unity microperveance. The design diameter of the electron beam was
2.5 mm. The gun envelope and the pole piece in front of the gun were
made of kovar in order to exclude the magnetic field from the gun region.
In spite of this some flux did apparently penetrate and could not be
compensated for. As a result of this and mechanical misalignments the
electron beam was found to ripple and the interception on subsequent

electrodes was found to be substantial under some conditions.
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In order to premeodulate the electron beam before entering the
plasma region, a short section of helical RF structure was placed
immediately following the gun. This helix was of the type commonly
used in traveling-wave tubes. Some of its characteristics are shown
in Table 6.1 The dielectric loading factor (DLF) is quite low. This is
due to the fact that the helix is placed in direct contact with the
ceramic cylinder containing it. Even though this method of mounting the
helix would not be desirable in a traveling-wave amplifier due to the
high loss, it is acceptable here where little gain is desired in the

helix sections.

Table 6.1

RF Helix Parameters

I.D. 5.91 mm
0.D. 4.93 mm
Pitch 1.37 mm
DLF 0.65

Synchronous Voltage ~1000 V
Xg at 2 GHz 1.0 cm
Interaction Length 5.0 cm

The plasma cathodes were dispenser cathodes with a fairly porous
tungsten matrix (Semicon Associates, Type S-75). The high‘porosity
insured a coplous supply of barium at the emitting surface, even when
poisoning might be expected to be quite high at the higher pressures.

At a temperature of 1050°C a hot-cathode Penning discharge of several
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hundred milliamperes could be created by a voltage of 25 to 30 V applied
between the cathode and the ground electrode adjacent to it with the
xenon pressure in the 10"% Torr region. A double-ended discharge was
used to insure a more uniform axial plasma density. The plasma region
was approximately 10.5 cm long.

An output helix identical to the input helix was used for
demodulating the electron beam after emerging from the plasma interaction
region. A beam collector surrounded by a water Jjacket was used for
dissipating the spent electron beam.

6.1.3 RF Couplers. Two means of coupling RF energy into and out

of the beam-plasma device were employed. One made use of coupled-helix

couplers74

which are employed extensively in traveling-wave tubes. The
coupler is a short section of helix, about two to three turns long and
wound in the direction opposite to that of the helix in the beam-plasma
device. It is essentially an impedance transformer that can be adjusted
to match the 50 @ impedance of a coaxial line to the substantially higher
impedance of the interaction helix. Two such couplers are shown in Fig.
6.5. Since they could not be slipped over the helix from either end after
the beam-plasma device was assembled, it was necessary to make the
couplers demountable so they could be assembled and disassembled on the
device. Measurements indicated that a good RF match (VSWR < 3.0) could
be obtained from 1.5 to 3.6 GHz. The coupling loss was approximately 1.5
dB per coupler.

The other means of coupling consisted of elliptic cavity couplers

which could be placed directly around the plasma discharge region of

Fig. 6.2. The RF energy launched by an antenna at one focus of an
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elliptic cavity is transferred phase coherently to the other focus,
where the plasma column is located. A cross-section drawing of such a
cavity is shown in Fig. 6.6 and a photograph of a completed cavity is
shown in Fig. 6.7. 1In Chapter VII a more detailed description of
elliptic cavity couplers and an analysis of this method of coupling will
be given.

The placement of the elliptic cavity couplers, as well as one of
the coupled-helix couplers on the beam-plasma device, may be seen in
Fig. 6.8. The cavities are held in place by three alignment rods
inserted in the magnetic pole pieces.

6.1.4 Axial Magnetic Field. An axial magnetic field is

necessary to focus the electron beam over the length of the device.

The Brillouin field for the beam used in this experiment is approximately
200 G. A value of two or three times this amount is frequently necessary
in experimental work when perfect Brillouin flow is not obtainable.

Three magnetic coils were used in this experiment, as shown in Fig. 6.9.
The two end coils had magnetic pole pieces through which the beam-plasma
device could be inserted. Alignment was achieved by means of the three
rods on which the elliptic cavity couplers were mounted. Use of the

two end coils by themselves did not yield a magnetic field of sufficient
uniformity. Thus a booster coil was placed around the center of the
device. Its field was trimmed independently of the main field so that
the total axial magnetic field was uniform to within three or four percent

between the gun and collector pole pieces.
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FIG. 6.6 DIAGRAM OF AN ELLIPTIC CAVITY COUPLER.
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FIG. 6.7 PHOTOGRAPH OF AN ELLIPTIC CAVITY COUPLER.
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6.2 Characteristics of the Xenon Plasma Column

The gas to be used in the beam-plasma experiments was chosen to
be xenon. The reason for the choice was that xenon is a noble gas with

a quite high ionization cross section.”®

This may be expected to yield
a sufficiently dense plasma at relatively low pressures. Thus cathode
poisoning would be minimized.

In the course of the experimental work two methods of generating
a plasma were employed: hot-cathode discharge and beam-generated plasma.
It was anticipated at the beginning of the experimental work that the
hot -cathode discharge plasma would be used almost exclusively. During
the course of the experimental work it was found, however, that the
beam-generated plasma had certaln features that recommended 1t for
extensive use in many of the large-signal measurements. One of the
important considerations was that the beam-generated plasma could be
maintained at lower gas pressures. This in turn yielded considerably

better RF performance.

6.2.1 Measurement of Plasma Density in the Plasma Tester. Before

the final beam-plasma device was constructed, the plasma tester shown
in Fig. 6.10 was constructed out of glass. It consisted only of the
center section of the beam-plasma device shown in Fig. 6.2 without gun,
collector and the two helices. The electrode configuration in the
plasma discharge section was, however, simulated as closely as possible.
Figure 6.11 shows a diagram of the plasma tester. A double probe was
placed at the middle of the plasma column near the point where the
highest plasma density along the radial direction was expected. The

results of measurements with the double probe are shown in Fig. 6.12
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as & function of the discharge current. An ionization efficiency in
the order of 0.1 percent was obtained. Two other methods of measurement
are shown in the same figure. One made use of two S-band waveguide horns
placed across the plasma column, forming an interferometer. The plasma
frequency could be calculated from the shift in phase through the
interferometer when the discharge was switched on and off. This method
may be expected to be the least accurate because of the size of the
horns being comparable to the whole plasma column. Thus only an average
plasma frequency could be obtained in this way.

The other method of determining the plasma frequency made use of
wave propagation along the plasma column. A surface wave could be
launched and received by the set of elliptic cavity couplers which were

placed around the plasma column. At the resonant frequency given by

W
S - (6.1)
w 5 .
r N1 + &

where Ky is the effective dielectric constant of the material surrounding
the plasma column, a strong signal could be detected at the receiving
cavity. Since the effective dielectric constant is somewhat less than
that for the glass tube surrounding the plasma (because of the finite
radial extent of the glass) a value of kg = 5.0 was chosen. The results
of these measurements are also shown in Fig. 6.12.

The probe measurements are taken at the most dense plasma region.

S considered axial and radial plasma density

Chorney and Madore”
variations for an annular cathode geometry of the type used in these

experiments. Near the outside edge of the plasma column they obtained

an approximately parabolic density variation, which may be expressed by
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Cp(r) = pm[l—a<§->2J . (6.2)

Here P is the maximum plasma density in the column of radius b, and
Q is a parameter between zero and unity, which determines the degree
of radial charge variation. Since the surface wave along the plasma
column sees the edge plasma density, it is possible to determine Q from

the measurements of Fig. 6.12 by

w = N1 -« Do (6.3)

pe

where wpe is the edge plasma frequency obtained by the elliptic cavity
data. The values of mbm_were obtained from the probe data. Thus in
this case @ was found to be approximately 0.5. A similar procedure

7% who suggested a low-frequency phase

was pointed out by Trivelpiece,
velocity measurement for determining wpm and a measurement of the
frequency where Bb = « for determining abe

When a longitudinal magnetic field was applied, the plasma
frequency and the electron temperature in the plasma tester were found
to vary as shown in Fig. 6.13. The data were obtained by use of the
double probe. The initial increase in plasma frequency is due to the
fact that the electrons begin to spiral slightly as the magnetic field
is increased a small amount from the zero value. Hence the electrons
have a higher probability of colliding with a gas particle and ionizing
it. As the magnetic field is increased further the Larmor radius of
the electrons becomes comparable to the plasma tube radius, enhancing

recombination at the tube wall and hence decreasing the plasma density.

Further increase in the magnetic field tends to confine the plasma, and
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diffusion to the walls decreases as 1/B2 for ambipolar diffusion or as
l/B for the so-called anomalous diffusion’’ to be discussed below. Note
that for the pressure of 210 2 Torr used in these experiments the mean-
free-path of the electrons 1s on the order of the tube diameter and the
mean-free-path of the xenon ions 1s less by a factor of MNGg: Thus the
operation 1s in a transition region between ambipolar and free diffusion
where most diffusion theories break down.'®

The dashed portion of the curves in Fig. 6.13 indicates that
for those values of magnetic field measurements were difficult to take
because of discharge current fluctuations accompanied by instabilities
in the plasma density. For the highest values of magnetic field these
instabilities still persisted,but they were much less violent, so that
meaningful data could be taken readily. Other workers®®>77 have found
these fluctuations to exist above a critical magnetic field, Bc’ which
increases with pressure and with the mass of the positive ions in the
plasma. An lmportant observation is that the quantity Bcb, where b
is the radius of the discharge, is essentially constant for a particular
set of discharge parameters. The instabilities are thought to accompany
anomalous diffusion across the magnetic field lines. This type of
diffusion involves microelectric fields set up in the plasma due to
density fluctuations. These electric fields give rise to drift motion
across the magnetic field, increasing the diffusion rate so that it is
proportional to 1/B rather than 1/B.

6.2.2 Plasma Generation in the Beam-Plasma Device., As noted

above, the plasma tester hot-cathode discharge was operated in the low

10°2 Torr pressure range. Identical results could be obtained with the
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final beam-plasma device. In attempting to obtain an electron beam

in this pressure range, the electron emission from the beam cathode very
quickly dropped to a fraction of one tenth or less of its rated value.
This could have been due to cathode poisoning by the impurity gases in
the device. Even though differential pumping maintained the pressure

in the gun region approximately one order of magnitude lower than in

the plasma region, there may have been a high enough partial pressure

of O2 or hydrocarbons for poisoning. Most likely, however, the drop in
beam emission was due to bombardment of the beam cathode by the positive
xenon ions. This caused the barium layer to be sputtered from the
cathode surface as quickly as it could be replenished. Attempts to trap
the ions in the plasma discharge region proved to be unsuccessful.

To obtain an electron beam it was therefore necessary to operate
in the 10 ° Torr range or lower. In addition to the problem with the
critical magnetic field decreasing with pressure, as described above,
an extinguishing pressure was reached in the upper 1072 Torr region.

As shown in Fig. 6.1k, as the pressure was decreased, the discharge
voltage drop rose very rapidly. The flattening of the curves near 50 V
was merely due to the maximum voltage limit of the constant current
supplies used to maintain the discharge. The extinguishing pressure is
probably due to the fact that, as the voltage increases, the ions can
be accelerated into the plasma cathodes to be sputter pumped. Thus at
a voltage between 25 to 30 V the pressure in the tube dropped rapidly
increasing the voltage drop further and finally extinguishing the

discharge.
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In view of these difficulties a different way of obtaining a
plasma was desirable. It was found that a plasma could be obtained by
making use of collisions between the beam electrons and the gas particles
at pressures as low as 1:10°° Torr. This method of plasma generation
has been used extensively. See, for example, References 23 through 25
and 39. Getty and Smullin®® explained the processes in a beam-generated
plasma as follows. The electron beam, when first turned on, ionizes the
background gas by inelastic collisions between the beam electrons and the
gas particles. If the pressure is sufficiently high so that the plasma
so formed is dense enough, the excited plasma electrons become the
dominant ionization source after a few microseconds. Nonconvective
instabilities initiate RF oscillations which first appear at the
cyclotron frequency. Then a convective instability at the plasma frequency
generates the oscillations that sustain the discharge.

For a fixed beam voltage the beam-generated plasma can exist in
two distinct modes for different beam currents or pressures. The mode
for lower values of pressure or beam current has been called the "beam
confined mode" by Dunn et al.79, while the mode at higher values of
pressure or beam current has been called the "total glow mode." The
former is so called because the plasma column is confined to the
approximate size of the electron beam, with the plasma density at the
beam edge having dropped to approximately half of its value at the center,
as some of Hedvall's®® measurements indicate. Above a critical pressure
the total glow mode exists. It fills the entire diameter of the tube
and in that respect it is similar to the hot-cathode discharge plasma.

The total glow mode i1s accompanied by a larger noise level at the output
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couplers of the device, as may be detected with a spectrum analyzer.
The transition from one mode to the other is quite abrupt and occurred
in the pressure range of 2:107° to 4.107® Torr for typical operating
conditions of the beam-plasma device tested in this study.

There was no provision to measure the density of the beam-generated
plasma in the final test vehicle. For that reason it was necessary to
calculate it from a knowledge of the pressure and the beam density.
Cavity measurements by Hedvall®® indicate that plasma densitles of many
times the beam density can be obtained in the 10™% to 1072 Torr region,
for example. At lower pressures there is very little scattering of the
beam electrons and it appears that the predominant ionization source is
the electron beam itself rather than secondary ionization by the plasma

25)80

electrons. It has been found experimentally that the plasma density

varies slowly with pressure but 1s proportional to the square of the
longitudinal magnetic field. Above a pressure of approximately 1074
Torr, with the exact value depending on the type of gas, secondary
ionization by the plasma electrons becomes predominant. Under those
conditions the density 1s nearly independent of magnetic field for high
enough values of B, but is proportional to the square of the pressure.
Frey®l has carried out a one-dimensional analysis that yields the ratio
of plasma density to beam density in a beam-generated plasma. He
assumed an infinite magnetic field so that the beam-generated ions and
electrons can leave the system by recombination or one-dimensional
ambipolar diffusion only. His results are for hydrogen, nitrogen and
argon, but may easily be extended to xenon. His agreement with Hedvall's

experimental results is excellent in the region where the density varies

with the square of the gas pressure. On the basis of Frey's calculations
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along with the experimental results of Hedvall the data for Table 6.2

were calculated for beam parameters appropriate to'this study.

Table 6.2

Characteristics of a Beam-Generated Plasma in Xenon

Beam Bean Beam Electron Plasma
Voltage Current Pressure Density n n Frequency
(V) (mA) (Torr)  (particles/cm®) eb’ “ep (GHz)
400 6 2.107% 6.2:10% 300 k.0
600 10 2.107% 8.6+10° 250 k.25
600 10 2.107° 8.6-10° 1500 10.1
600 6 2.1078 7.7-108 1500 9.5

6.3 RF Test Results

The RF test data to be presented in this section were obtained
with the beam-plasma interaction device described above. The coupled-
helix couplers and short sections of the helical slow-wave structure
were used to couple RF energy into and out of the system. Work done
with the elliptic cavity couplers will be described in Chapter VII. The
complete experimental test facility is shown in Fig. 6.15. The plasma
device 1s located behind the meter panels near the top of the photograph.
The cold loss of the beam-plasma device between the input and output
coupled-helix couplers was very high, as Fig. 6.16 shows, and was not
appreciably different when the plasma was either present or absent. This
indicates that the RF leakage in the absence of the beam and plasma and
the transmission through the plasma in the absence of the beam are
approximately the same due to the dominance of the coupling losses in the
absence of the beam. A Hewlett-Packard Model 851A/8551A spectrum
analyzer was used for all RF measurements so that the various signals,

harmonics and spurious osclllations could be ascertained simultaneously.
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Most RF data were taken at beam voltages in the range of 400 to
600 V. TFigure 6.17 shows the beam transmission through the device as a
function of voltage for two different values of magnetic focusing field.
The first case corresponds to approximately 1.5 and the second to 2.5
times the Brillouin field at 500 V. Balanced flow could be attained in
neither case. The cathode current was adequate to furnish a beam current
well above the design perveance of 1 microperv but the current entering
the plasma region is seen to be roughly one half the cathode current due
to interception on the gun pole piece -and the first helix. The location
of these various components may be seen in Fig. 6.2. After traversing
the plasma, further beam interception took place on the second helix
so that only 20 to 25 percent of the cathode current finally reached the
beam collector. The interception is believed to be due to small
misalignments, particularly of the electron gun and the second plasma
cathode. As already mentioned, magnetic flux lines fringing into the
electron gun region caused the beam to ripple quite severely as it
traversed the device. The erratic behavior of the two lower solid curves
of Fig. 6.17 is due to the fact that the focusing field was slightly
below the Brillouin field for voltages above 600 V.

Figure 6.18 shows the beam interception on the first helix and
the gun anode as the pressure was raised from below 2.10°* Torr through
the 10™ 2 Torr region. At first the first helix current is seen to
decrease due to ion focusing of the beam. It reached a minimum near
a pressure of 1-10°2 Torr. As the pressure was increased above this
value the interception currents rose due to scattering of the beam
electrons as a result of collisions. The apparent drop in helix current

-3 . . s
above a pressure of T-10 Torr was due to a decrease in cathode emission
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as a result of poisoning or sputtering. The transition from the beanm
confined mode to the total glow mode in the beam generated plasma
occurred at 2-10 2 Torr in this case.

6.%.1 Gain and Harmonic Generation Tests. In Fig. 6.19 the small-

signal electronic gain as a function of beam voltage may be seen. The
maximum value of electronic gain was found to be 36 dB for the parameters
indicated. The beam-generated plasma operated in the beam confined
mode in this case. It should be noted that there was no net gain from
the device due to the very high value of cold loss shown in Fig. 6.16.
The large variations in the gain curve can be explained as follows.
Since there 1is an abrupt discontinuity in the plasma at the ends
of the interaction region, RF waves set up in the plasma are almost
totally reflected at both ends of the plasma unless good coupling to
the plasma column can be achieved. A wave propagating back and forth
along the plasma column can grow whenever the round-trip gain from end
to end along the column is greater than unity. Thus a gain curve with
sharp peaks, as the voltage or the frequency are variled, may be expected.
Figure 6.20 shows some spectrum analyzer patterns of the output
from the beam-plasma device operating under the same conditions as those
for Fig. 6.19, except that the drive power was sufficient to nearly
saturate the device. In Figs. 6.20a and b the fundamental is shown, with
the frequency scale expanded ten times in Fig. 6.20b. The noise level
is seen to be at least 20 dB below the signal. The second harmonic
output is shown in Fig. 6.20c and is seen to be approximately 10 dB below
the fundamental. Note that in these, as well as in all subsequent

spectrum analyzer patterns, the frequency increases from right to left.
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~ bem
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- ~ fem

<—— FREQUENCY, 300KHz/cm <— FREQUENCY, 300KHz/cm

(b) FUNDAMENTAL (c) SECOND HARMONIC

FIG. 6.20 TYPICAL SPECTRUM ANALYZER PATTERNS OF THE OUTPUT FROM A
250 mW,

i

BEAM-PLASMA DEVICE. (f_ = 2.0 GHz, DRIVE POWER

Il

P = 2.10"* TORR, f, = 728 MHz, fp = 4.3 GHz, I_ =10 uA,

v, =585 V)
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In Figs. 6.21 through 6.26 the performance of the beam-plasma
device operating in the beam-confined mode is summarized. Figure 6.21
shows the small-signal electronic gain at a number of frequencies for
two different voltages and with the magnetic field set at 260 G. The
maximum of 36 dB was found at 2.0 GHz for 520 V. Comparing these results
with Fig. 5.1, it should be noted that experimentally gain occurred
over a considerably wider frequency range. As pointed out in Chapter
V this is believed to be due to nonuniformities in the density across
the plasma column. The saturation characteristics of the device are
shown in Figs. 6.22 and 6.23, where the output of the fundamental signal
and the harmonics that could be detected on the spectrum analyzer are
plotted. At a frequency of 1.045 GHz the device is obviously satu-
rating, but for a frequency of 1.7 GHz sufficient drive power was
available just to approach saturation. In Fig. 6.23 the second harmonic
comes to within 5 dB of the fundamental at saturation. t no time was
it possible to detect harmonic signals above 6.0 GHz. Harmonic signals
between 5.0 and 6.0 GHz were usually so small that they could be seen
only in a few instances. This was due to the rapid deterioration of
the coupler VSWR above 5.0 GHz and the very low value of interaction
impedance near the plasma fredquency. The plasma frequency was estimated
to be slightly above 4.0 GHz for these conditions, as explained in
Section 6.2; however, due to nonuniformities in the plasma column
harmonics above this frequency were observed experimentally.

Figure 6.24 summarizes a large amount of experimental data, such
as is shown in Pigs. 6.22 and 6.23. The harmonic power output below

the fundamental power level is shown at saturation.
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Figure 6.25 is similar to Fig. 6.21 except that the axial magnetic
field in this case was 485 G. A maximum small-signal gain of 55 4B was
observed at 570 V and 2.0 GHz. In Fig. 6.26 the level of the harmonics
that could be observed is again compared with the fundamental output
power.

Table 6.3 lists the gain, interaction length and the first two
harmonic levels obtained experimentally and by use of the various
theoretical models. For the theoretical calculations the input level
of the fundamental signal was chosen to be 30 dB below ClIOVO, which
insures that small-signal conditions prevail at the input and that the
experimental and theoretical values of gain are comparable for an
easy comparison of interaction length. The gain predicted by the two-
dimensional analysis is too high because beam collision effects were
neglected. The distance for saturation from the one-dimensional theory
is too low because radial effects are not negligible. 1In addition,
nonuniformities in an actual plasma may result in a larger saturation
length. The discrepancies between experiment and theory in the harmonic
levels can be easily understood from an inspection of any of the graphs
of Chapter V showing the circuit voltage amplitudes or RF currents as
a function of axial distance. It may be noted that these quantities
vary substantially within a short axial distance in the vicinity of the
saturation plane. Thus small position changes of the output coupler of
the device could result in large variations of the harmonic power output.
It is also likely that the plasma extended into the helix regions in a
highly nonuniform fashion so that the coupling could be enhanced,

resulting in the unexpectedly high harmonic output at the second harmoniec.
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Deterioration of the coupler VSWR on the other hand could prevent some
of the higher harmonic components from being coupled out effectively.
This may have been the case for the third harmonic. In view of these
sources of error the agreement of the results shown in Table 6.3 is
seen to be quite reasonable. It has been found experimentally that the
magnitudes of the harmonic components in this beam-plasma amplifier
are comparable to those in a conventional traveling-wave amplifier with
similar operating parameters, except in those cases where plasma
nonuniformities enhance the coupling at certain frequencies.

Operation of the beam-plasma device in the beam confined mode
is compared with operation in the total glow mode in Fig. 6.27. Here
IK is the cathode current and IO is the current through the plasma region.
Transition from one mode to the other occurred quite suddenly in the
region between 2.1072 and 3-10°° Torr. Note the higher noise level in
the total glow mode and the reduced power output. The reduction in
power is attributed to (1) reduced beam current through the plasma
region due to higher pressure and (2) increased collision frequency,
which increases the loss through the plasma. In Fig. 6.28 operation in
the total glow mode is studied in more detail with the RF input signal
separated from the cyclotron frequency by 90 MHz. The first spectrum
analyzer photograph shows the background noise level at the output of
the device along with oscillations at the electron cyclotron frequency
with no input signal applied. The second photograph shows an output
signal with the input drive level slightly below saturation. When the
device was driven well into saturation, as shown in the third photograph

of Fig. 6.28, the cyclotron oscillations were completely suppressed and
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<«— |OMHz/cm <+—— |OMHz/cm
(a) BEAM CONFINED MODE (b) TOTAL GLOW MODE

Vg = 553 V V= 553 V

I =16.3 mA I =16.2 mA

Io=80 mA Io=6.0 mA

P=2-100% TORR P=3-10"° TORR

FIG. 6.27 COMPARISON OF BEAM CONFINED AND TOTAL GLOW MODES. (fs = 2,013

GHz, f, = 1.357 GHz)
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FIG. 6.28 OUTPUT CHARACTERISTICS OF A BEAM-PLASMA DEVICE OPERATING IN
THE TOTAL GLOW MODE WITH THE INPUT SIGNAL CLOSE TO THE CYCLOTRON
FREQUENCY . (vO = 580 v, I =T7.2m, £, = 1260 MHz, £, = 1150

MHz, fp = 9.56 GHz)
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the second harmonic is Just barely visible at a level approximately
15 dB below the fundamental.

In Fig. 6.29 the saturation characteristics for the beam-plasma
device operating in the total glow mode with a small-signal electronic
gain of 20 dB are shown. Note that in this case the third harmonic
was greater than the second by as much as 8 dB at saturation. Figure
6.30 depicts this situation in the form of a spectrum analyzer phuto-
graph. Cyclotron oscillations were suppressed in this case because the
cyclotron frequency and the fundamental signal were separated by only
%5 MHz. Figures 6.%1 and 6.32 show total glow mode operation at a
higher magnetic field and with the separation between signal and
cyclotron frequencies much greater than in the two previous figures.
Here saturation was Jjust barely reached due to a lack of adequate drive
power, the second and third harmonics were 14 and 20 dB below the
fundamental, respectively, and the cyclotron oscillations were not
suppressed.

6.3.2 Intermodulation and Cross-Modulation Tests Using Two RF

Signals. Both of these phenomena may be expected to take place when
a beam-plasma device is operated in the nonlinear regime. Since the
one-dimensional computer program used for calculating the harmonic
components was general enough to handle closely spaced signals as well,
a few results showing two-signal operation of a beam-plasma device will
be included in this study. All data was obtained for operation in
the beam confined mode at a pressure of 2.10"* Torr.

Let fa be the lower frequency signal and fb be the higher

frequency signal. The two intermodulation products which are closest to
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FIG. 6.30 SPECTRUM ANALYZER DISPILAY OF THE FUNDAMENTAL AND ITS FIRST
TWO HARMONICS IN THE OUTPUT FROM A BEAM-PLASMA DEVICE OPERATING

IN THE TOTAL GLOW MODE. (VO = 580 V, I, = 7.8 mA, f, = 780 MHz,

f, = 745 MHz)
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FIG. 6.%2 SPECTRUM ANALYZER DISPLAY OF THE FUNDAMENTAL AND THE SECOND
HARMONIC AT THE OUTPUT OF A BEAM-PLASMA DEVICE OPERATING IN
THE TOTAL GLOW MODE. (VO = 580 V, I, ="T.2mh, £, = 1260 MAz,

fo= 924 MHz)
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the input signals are Qfa - £, and 2fb - f,. Holding the input signal

level of fb fixed, Fig. 6.33 shows a drop in fb at the output of the
device due to cross-modulation as fa is increased to saturation and
slightly beyond. The small-signal gain of the device was approximately

5% dB. The drive level was so chosen that when fa of comparable

magnitude was applied the device was saturating, even though fb alone

was not sufficient for saturation. The magnitude of the intermodulation
components is also shown in Fig. 6.33. Their level comes to within
approximately 15 dB of the drive signals. For the frequency spacing of

6 MHz chosen for this run only two modulation components were detected.
Figure 6.34 shows the corresponding results for the case when the lower
frequency input signal, fa, was held fixed while the upper frequency
signal, fb’ was increased. The intermodulation components were comparable
in magnitude to the previous case, but there was a negligible decrease

in the output of fa' This shows that the lower frequency signal dominates
when clogsely spaced signals of approximately equal strength are applied

to the device. Similar results are obtained for a conventional traveling-
wave amplifier, but were not apparent in the theoretical calculations

for the beam-plasma amplifier. This 1s due to the fact that, for the
frequency difference of 100 MHz that had to be used in the calculations,
the variation in the velocity parameter and hence the gain completely
masked this effect. Figure 6.35 shows a series of spectrum analyzer
photographs of the behavior of the intermodulation components as fb
was held fixed while fa was increased until the device saturated. All
parameters are the same as for the two previous figures. Note that the

intermodulation components are approximately 15 dB below the primary

output signals.
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FIG. €.33 INTERMODULATION COMPONENTS AND HIGHER FREQUENCY OUTPUT AS THE

LOWER FREQUENCY TINPUT LEVEL IS VARIED. [fa = 1.994 GHz, fb =

2,000 GHz (140 mW DRIVE POWER), SMALL-SIGNAL GAIN = 33 dB, v, =

5715V, I, =8.9 mA, B_ = 485 @, £, = 4.2 GHz, P = 2-10" % TORR]
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FIG. 6.35 SPECTRUM ANALYZER DISPLAY OF THE OUTPUT OF A BEAM-PLASMA DEVICE

WITH TWO INPUT SIGNALS. (fa = 1.994 GHz, f_ = 2.000 GHz, v, =

b
513 v, I_=8.9 mh, B = 485G)
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The next two figures are similar to the previous ones, except
that the input signals are more closely spaced. They are only 1 MHz
apart in Figs. 6.36 and 6.37. Consequently, two additional intermodulation

components could be seen at Bfa - 2f  and 5fb - Efa. The output from

b
the device is shown in Fig. 6.36 as the higher frequency signal amplitude
was held fixed, while the lower frequency amplitude was increased until
saturation set in. Figure 6.37 shows a spectrum analyzer display of

the various signals in the saturation region. Note that the higher
freqﬁency output signal has been slightly suppressed by the lower
frequency one. Signals 2fa - fb and Efb - fa appear approximately 20 dB
below the primary signals, be - Efa appears approximately 25 dB below

the primary signals, while Bfa - 2f, is Just barely visible.

b

In summary, it can be sald that the experimentally observed
intermodulation components agreed within a few dB with the results
calculated in Chapter V. A detailed comparison is not possible because
a far greater frequency separation had to be used for the computations
than for the experiments. As was pointed out in Section 5.3.4, this
was necessitated by the limit in the number of charge groups that could
be tracked through the interaction region.

Comparing the results of this study with El-Shandwily's data’®
for a Sperry STX-297 traveling-wave amplifier, one finds that the
intermodulation components appear slightly higher in this beam-plasma

device. This is probably due to a higher value of interaction impedance,

which results in a higher value of the gain parameter, C .
1
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CHAPTER VII. COUPLING TO BEAM-PLASMA SYSTEMS

7.1 Introduction

One of the principal advantages of a beam-plasma device compared
with a conventional microwave tube is that the slow-wave structure is
replaced by the plasma column. Thus the problems inherent in manu-
fécturing the fragile slow-wave structure are eliminated. Unfortunately
the problem of coupling into the device is still present. The
experimental data of Chapter VI, for example, were obtained with a
beam-plasma device that made use of short sections of slow-wave
structure to which RF energy could be coupled. These were located
outside of the actual plasma, but were Jjust as limited in size as the
slow-wave structure of a comparable traveling-wave tube.

Elliptic cavity couplers represent a guasi-optical approach
to coupling to a beam-plasma system. They were mentioned briefly in
Chapter VI and will be analyzed more fully below. There are no stringent
restrictions on the size of such a coupler other than those dictated by
impedance considerations. Of course, wall losses increase with
physical size, but these are ordinarily small compared to the coupling
losses between the cavity and the plasma. Thus, 1f the impedance of
an elliptic cavity can be matched to the impedance of the plasma

column, an excellent coupling scheme should result.

7.2 Analysis of Elliptic Cavity Couplers

Consider the radial transmission line depicted in Fig. 7T.la

consisting of two parallel plane conductors with a spacing, b, between

~21 k-




(a) RADIAL TRANSMISSION
LINE COORDINATES

UNIFORMLY
DISTRIBUTED

(c) TOP VIEW OF TERMINATED
RADIAL TRANSMISSION LINE

FIG. 7.1 DEVELOPMENT OF AN ELLIPTIC CAVITY COUPLER.
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(b) TERMINATED RADIAL
TRANSMISSION LINE

REFLECTING
WALL

(d) ELLIPTIC DEVELOPMENT OF
RADIAL TRANSMISSION LINE
(TOP VIEW)
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them. Solving the wave equation for such a system one finds that the

82

dominant E-type mode is a TEM mode. The excitation geometry and

guide dimensions will later be chosen so that the dominant mode
characterizes the field everywhere. The nonvanishing field components
of this mode are the Ez—component, which has no variation in the
z~direction, and the HQ—component, which corresponds to a total radial
current 2nrH®, directed outward in one plate and inward in the other.
The component EZ corresponds to a total voltage EZb between the

plates. Thus

E, = -V(r)/ (7.1)
and

o = I(r)/2nr . (7.2)

The corresponding characteristic impedance is then

7z = to/f2m (7.3)

where

6 o= (/e )M2 = 317 0 (7.4)

when the space between the radial waveguide planes is empty. For
computation of power flow the input impedance of a matched line is
not in general equal to its characteristic impedance.

In a radial waveguide the concept of guide wavelength loses 1its
customary meaning because of the nonperiodic nature of the field
variation in the transmission direction. Consequently the usual
relation Between guide wavelength and cutoff wavelength is not valid.

However, the cutoff wavelength, defined as the wavelength at which the
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propagation constant is zero, is useful as an indication of the
propagating or nonpropagating character of a mode. For an E-type

mode the cutoff wavelength is given bys2

N = [(n/20)2 + (n/2wr)?]72/2 (7.5)

C

Thus for the dominant mode, for which m = n = 0, there is no lower
frequency cutoff.

Instead of letting the radial transmission line extend to
infinity, it is assumed to be terminated in an impedance ZL uniformly
distributed around a radius ro, as shown in Fig. 7.1b. Assume also

that an input signal 1s applied at r.. For such a case Ramo and

Whinnery88 derived an expression for the input impedance, Zi’
defined by
Ez
Zi = 5 . (7.6)
¢

For arbitrary values of ZL the result is

. - g ZL cos(9i - WL) + jZOL sin(@i - GL) i
i oi z . co.s(\lf_l - GL) +3zp Sin(wi C wL) s .
where
Go(kor)
Zo(kor) = ¢ Ezzgggy , (7.8)
No(kor)

. =1
9(1{01’) = tan W 3 (79)

Il
o+
o
o]

W(kor) (7.10)
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G (k. r) = NI2(k r) + N (k r) (7.11)

and

G (k) = 'JJf(kOr) + Ni(kor) . (7.12)

Here ko is the propagation constant of free space and the J's and N's are
Bessel functions of the first and second kind, respectively.

Choosing Z. = 50 § for a reason which will be apparent shortly,

L

Bq. 7.7 was used to calculate the input impedance as a function of

kOrL with kr, = 0.416. The results are shown in Fig. 7.2.

Knowing the characteristics of a terminated radial transmission
line the final step in the development of an elliptic cavity coupler
is depicted in Figs. T7.lc and d. The transmission line of height b and
radius Ty is replaced by an elliptic line of height b such that ¢ + 4 =

r A perfectly reflecting surface is assumed to be located at A'

L
and the 50  load is at B. The foci of the ellipse are at A and B.
The final geometry of the elliptic cavity is shown in Fig. T7.5. It is
a characteristic of an ellipse that the lengths of the rays between

one focus, the wall and the other focus are all equal. In particular,

in Fig. 7.3,

FAF = FBF = r_ . (7.13)

One may now place a transition to a 50 Q coaxial transmission line at
F2 and a plasma column of radius ry at Fl. Then RF energy launched

in the cavity at F2 is transmitted in phase to the plasma at Fl due to
the equal path lengths between the two foci. TheAelectric field in

the cavity is such that it lies along the longitudinal direction of
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PLASMA B
COLUMN

COAXIAL LINE
INPUT (Z, =50 Q)

FIG. 7.5 CONCEPT OF AN ELLIPTIC CAVITY COUPLER.
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the plasma column, as is desired for a beam-plasma interaction. Phase
errors are introduced due to the fact that the path lengths are not
all exactly equal since the plasma column and the coaxial line
transition have finite dimensions. This problem may in part be compen-
sated for in an actual cavity by making trial and error adjustments
in the matching antenna between the coaxial line and the cavity.

To be suitable with the experimental device described in Chapter

VI the cavity dimensions were taken as shown in Table 7.1.

Table T.1

Cavity Dimensions

Major Axis of Ellipse 6.25 em
Minor Axis of Ellipse 5.70 cm
Eccentricity of Ellipse 0. ko7
Cavity Helght 1.06 cm
Design Center Fredquency 2.5 GHz
r. 0.795 cm
kr. 0.416

k ro (from Fig. 7.2) 6.545

This choice of dimensions for the cavity places the operating point
of 2.5 GHz near the center of one of the broad valleys in the resistive
component of the input impedance shown in Fig. 7.2. The reactive
component is near zero for those conditions. Thus operation should be
possible over a band of frequencies around 2.5 GHz. Note that the
input impedance is in the range of 20 to 100 {, requiring a plasma

column corresponding to Fig. 2.12 rather than Figs. 2.8 through 2.11.
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This implies that the plasma column is required to fill the tube,
necessitating a hot-cathode discharge or possibly a beam-generated
plasma operating in the total glow mode. A beam-generated plasma in
the beam confined mode, as availlable in the present experimental device,
could not be expected to be matched to the cavity. These points will
be discussed more fully in the next section.

A cross section through an elliptic cavity coupler is shown in
Fig. 7.4. A standard type-N RF connector modified for this purpose
was used at the input.

For a coaxial line the characteristic impedance is given by
¢ r2>
z = —————zn<—— , (7.11)
¢ QnVe/eo rl

where { = 377 Q and € is the dielectric constant of the material (with
permeability p = uo) filling the coaxial line. The radius of the

inner conductor 1is rl and the inside radius of the outer conductor is
r2. In the transducer between the coaxial line and the cavity the
spacing between the inner and outer conductors of the line was tapered
to maintain a 50 Q impedance, as shown in Fig. 7.4. The inner conductor
thus forms a conical antenna at the input to the cavity. The exact
shape of the cone, particularly at its base, was determined by trial
and error so that a good match to the cavity impedance was achieved.

A photograph of a disassembled cavity is shown in Fig. 7.5. The tapered
steps around the hole through which the plasms tube passes were used to
reduce the impedance of the cavity by trial and error. This was done

in order to obtain a better impedance match for the hot-cathode discharge

plasma.
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7.5 Test Results Using Elliptic Cavity Couplers

It already has been pointed out that the elliptic cavity
couplers can be expected to couple best to the hot-cathode discharge
plasma column which required a gas pressure of approximately 1-10° %2
Torr for stable operation. The results of a coupling experiment are
shown in Fig. 7.6. The cold loss through two cavities and the plasma
tube with no plasma present was in the 60-80 dB range from 1.3 to
2.6 GHz. When a plasma was present the cold loss dropped markedly
over this range, particularly for a discharge current of 400 mA per
cathode. 1In the upper L-band the insertion loss varied from 30 to 4O
dB while in the lower S-band it was in the vicinity of 25 to 30 dB.
Just below the design frequency of 2.5 GHz the insertion loss was only
2l dB. Since the RF losses in the cavities and the plasma column
may be expected to be small compared to the coupling loss, most of
the 21 4dB may be attributed to the coupling. Thus a loss of 10 to
15 dB per coupler was observed over a fairly wide range of frequencies.
Since the beam-plasma interaction yielded a gain of more than 30 dB in
the device tested, net gain should be possible with this method of
coupling.

Unfortunately the electron beam emission could not be maintained
at pressures in the 1072 Torr range due to lon bombardment of the
cathode. When the pressure was lowered sufficiently so that an
electron beam with rated current could be obtained, the hot-cathode
discharge became unstable due to an anomalous diffusion and extinguished
due to sputter pumping in the discharge region. These problems were

discussed in Chapter VI.
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The plasma that could be maintained at lower pressures was the
beam~generated plasma. The beam confined mode, which existed at
pressures below 2-10 2 Torr and for which the best experimental gain
was obtained with the coupled-helix couplers, had a characteristic
impedance of several hundred ohms, as shown in Figs. 2.8 through 2.11.
Thus it was not possible to match the cavity impedance to the plasma
column over a sufficiently wide frequency region. Even the total
glow mode of the beam-generated plasma yielded negative results in a
coupling experiment with the elliptic cavities. Apparently the
plasma density was still too low to yleld a sufficiently low impedance
to be matched to the cavitiles.

These results are in general agreement with the work at
Microwave Associates,eo where it was found that the best plasma
density for coupling does not ordinarily correspond to the plasma
density for optimum gain. To overcome this difficulty it may be
necessary to taper the density and possibly the magnetic field®? in
order to obtain better radial propagation and hence tighter coupling

to the system.




CHAPTER VIII. CONCLUSIONS AND RECOMMENDATIONS FCOR FURTHER STUDY

8.1 Summary and Conclusions

The equivalent circuilt representation of a plasma column was
found to be an effective and convenient method of modeling the plasma
in a beam-plasma interaction. The characteristic impedance found in
this way included a loss term due to plasma collisions. Collisions due
to the beam electrons with the plasma were also accounted for by an
additional term in the beam force equation.

One of the chief stipulations in the development of the equiv-
alent circuit concept for a plasma column was that the plasma remain
linear under all conditions. It was shown that under ordinary
circumstances this requirement is easily satisfied. In other appli-
cations such as plasma heating or plasma containment in high fields
this may not be the case and would have to be investigated before plasma
linearity may be assumed.

Even though the one-dimensional interaction model resulted in a
good qualitative understanding of the interaction process, it was
generally optimistic in predicting the output levels from the device.
In particular, the interaction distance required for saturation to
occur was consistently too low. The two-dimensional model, which took
radial variations into account, corrected these shortcomings, so that
fairly good agreement could be obtained with the experimental

measurements.

-228-
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The beam-plasma device was found to be considerably more dis-
persive than a conventional helix-type traveling-wave amplifier, for
example. TFor this reason the appropriate dispersion equation had to be
solved in order to find the w-B characteristics before the characteristic
impedance could be calculated. Even though the phase velocity along the
plasma column was appropriate for beam-plasma interaction over a band-
width of approximately 20 percent, the characteristic impedance remained
at a substantial level over a frequency band of several octaves. This
suggests that a beam-plasma device might be rich in harmonics, provided
they can be coupled out. This was in fact found to be the case.
Experimental results indicated that in some cases the second harmonic
was as little as 3 to 6 dB below the fundamental. In other cases, when
the second harmonic was 12 to 15 dB below the fundamental, the third
harmonic was actually several dB larger than the second.

Nonuniformities in the plasma density were not taken into account
in the theoretical development, but they did play a major role in the
experimental device. For one thing, they resulted in a considerable
broadening of the frequency region over which gain could be observed.
Second, the interaction length required for saturation to take place
was increased by nonuniformities. Most significantly, however, it
appears that nonuniformities permitted some of the higher harmonics to
be generated that otherwise would not have existed. Since the density
varied across the plasma column, the plasma frequency varied also.

The higher harmonics appearing in these experiments were ordinarily
generated by an inductive wall interaction, which may take place between

>
the hybrid frequency and wp when w ~ W, and wb is several times W,
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Thus the increase 1n plasma density toward the center of the column
broadened this interaction region and resulted in the production of
additional harmonics.

Two methods of coupling into and out of the experimental device
were employed. One made use of coupled-helix couplers and short sections
of helical slow-wave structure at both ends of the plasma region. This
method worked quite well and was used almost exclusively in the gain
and harmonic generation tests. The main shortcoming of this method
of coupling is that a slow-wave structure is required, just as in a
conventional microwave tube. Ags the operating frequency becomes high
this slow-wave circult becomes very small, is difficult to fabricate
and 1s not able to handle large amounts of RF power.

For that reason elliptic cavity couplers were built and placed
directly around the plasma column. Being a gquasi-optical method of
coupling, it did not suffer from size limitations, as the coupled
helices did. A coupling loss of 10 to 15 dB per cavity could be
obtained over a substantlal frequency region. ©Since high RF gain per
unit length 1s possible in a beam-plasma interaction, this method of
coupling holds great promise to yield net gain in a device similar to
the one used for the experimental work of this study. Some ways of
overcoming the problems encountered with the elliptic cavities in the

device used for this study will be mentioned in the next section.

8.2 Recommendations for Further Study

The experimental work demonstrated that plasma nonuniformities
are quite important in altering the theoretically calculated values

of interaction length, the harmonic current magnitudes and the gain.
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For that reason they should be included in the theoretical analyses.
Conceptually the approach to this problem appears to be straightforward.
One merely has to make allowance for axial and radial plasma density
variations by letting the equivalent dielectric constant of the plasma
column and hence the characteristic impedance be a function of axial
and radial distance. This could be done in a continuous manner, but
with a stepwise approximation for use in the digital computer programs.
From a programming standpoint and in view of the much longer computing
time needed in such a case, the problems that would be encountered

are immediately apparent. Nevertheless, in some cases 1t could be
worthwhile to make such an analysis.

The requirement of linearity for the plasma is believed to be
readily met in beam-plasma interactions of the type considered in this
study. In any case, the equivalent circult approach does not appear
to lend itself easily to the inclusion of nonlinearities. If
nonlinearities should become important in this or related applications,
it would be necessary to treat the plasma on a particle basis, as is
done for the electron beam. The double-stream interaction approach
is a step in that direction. A completely nonlinear analysis would be
interesting in that it would point out exactly how negligible plasma
nonlinearities really are. Particularly if thermal effects in the
plasma and the beam played an important role, this type of analysis would
be very useful.

In the experimental work 1t would have been desirable to have
a method of measuring the radial density distribution of the beam-

generated plasma by means of cavities and/or probes. The effects of




sheaths should be investigated. Also, the instabilities in the plasma
column along with the effects of anomalous diffusion, when a focusing
magnetic field is present, should be studied.

Far more important than these considerations is the experimental
solution to the coupling problem. By improving the stability of the
plasma column it should be possible to operate the hot-cathode discharge
at a lower pressure, so that a dense plasma suitable for coupling to
the cavities can be obtained without poisoning the beam cathode. A
lower pressure 1s desirable also from the standpoint of achieving a
lower collision frequency and hence obtaining more gain. Ion trapping
might be employed to cut down cathode bombardment and sputtering.
Positioning the gun off the axis would also help in this matter because
the positive ions in following the magnetic field lines would not strike
the cathode.

Instead of lowering the characteristic impedance of the plasma
column, an attempt should be made to railse the cavity impedance,
particularly if cavity coupling to a plasma column operating in the
beam confined mode is desired. It is not likely that these adjustments
can be made by impedance matching outside of the cavity, but a reduction
in the hole diameter through which the plasma enters the cavity should
yield the desired results. To this end it may be necessary to make
the cavity an integral part of the plasma tube in order to bring the
coupling gap into the immediate vicinity of the beam-generated plasma

column.




APPENDIX A. DISPERSION RELATION FOR A GENERAL BEAM-PLASMA SYSTEM

In Fig. A.1l the geometry is shown for which the dispersion
equation is to be obtained. Region I contains an electron beam and the
plasma, while Regilon IT contalns only the plasma. Region III is a
dielectric cylinder with relative dielectric constant Koo At radius a
there is a metallic boundary. The plasma is assumed to be cold, uniform,
stationary and neutral. The velocity, us of the monoenergetic beam
electrons and the dc magnetic field coincide along the z-direction.
Nonrelativistic mechanics is assumed to apply so that the ac magnetic
field is negligible. The equations of motion applicable to the various
regions yield expressions for the specific inductive capacity and hence
the dielectric tensor. These quantities are derived in Appendix B for
Region II, which contains a stationary plasma only. In Region I, where
the beam is present in addition to the plasma, the specific inductive
capacity components have a term Just as for Region II plus a term where

is everywhere replaced by w - kuo. Thus in Region I

(3) (-93) (%) (o)

K faud l - J

(-e5) () C-oomm) ()

(A.1)
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where w_ and W, are the plasma frequencies in the plasma and the beam
regions, respectively.

In order to obtain a dispersion relation for the beam-plasma

system, Maxwell's equations must be combined to obtain the wave equations.

These must be solved along with the appropriate boundary conditions.

The Maxwell equations in terms of ac quantities are

OH

vXEl = 50t s (A.})
dE

vXFfl = ?1+€0573—1- s (A.5)

P
v.E = -+ (A.6)

1 €

O

and

v.-E = 0 . (A.T)

Assuming all field quantities to vary as exp[j(wt-np-kz)], considering
the geometry of Fig. A.l as regions of current-free noncharged

dielectrics, and making use of
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V.D = V. (e ¥E) = 0 , (1.8)

one may expand Maxwell's curl equations in cylindrical coordinates to

yield
F -kE = ap H (A.9)
r oz 0 or ’ '
OE
JKE + 5= = Jop H (A.10)
r Or o
O(rE )
1 T . n .
r or *J T Er h _Ja“on ? (a.11)
- 32H +3kH = jeEA, -€EA (A.12)
Z © or 1 oy x ’
aHZ
SR, - 5= € EA H JeOECPAl (A.13)
and
K
1 9 . n . LIT
roop () v 3T = Je By <°° - kug * kg r‘>
' IT
K K
R 7T </E§l£ - E§£ - (A1h)
- TIIT iT
In the above,
I - ku -k
17 %y o 1T T furr
and
A 2 - ku + k
x 0 T o xT YokxTT

The k's with subscripts I and II apply to Regions I and II, respectively.
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In the following the quasistatic assumption will be made, which

reduces the full set of Maxwell's

electrostatics. Thus

equations to the equations of

(A.15)

This approximation is valid in systems where the space-charge waves,

or slow waves, travel at a small fraction of the speed of light.

In view of Eq. A.15, it is

and

from Egs. A.9 and A.10.

possible to obtain

1 aEZ
j_k St (A.16)
E——r- E, (A.17)

Substituting these into Eq. A.8, the following

wave equation for Region I is obtained:

-l_a—<raEZI -iE -ksz = 0
r Or dr 2 zI K1 2T
Let
aal
T 2 21, (A.18)
it
so that
OE o
1 9 zI n _
-~ $<I‘ S +<Tb - r2>EZI = 0 (A.l9>
The solution to Eq. A.19 is
EZI(r) = Aan(Tbr) s (A.20)
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where the An are arbitrary constants and where the Bessel functions of

the first kind only appear, because EZ is reguired to be bounded as

I

r - 0. In Region IT, by a similar procedure,

EZII(r) = Ban(Tpr) + CnNn(Tpr) , (A.21)

where Bn and Cn are arbitrary constants and where

1l
T2 = - k2 —iL (A.22)
P fi1T
In Region III,
EZIII(r) = DnIn(kr) + FnKn(kr) s (A.23)

where Dn and Fn are arbitrary constants and where the modified Bessel

functions have been used. The boundary conditions are

Errr(® = 0
EZI:[(b) = EZIII(b) 2
O, 11(r) ~ O 117(r)
“ITT " or = e or ’
r=b r=Db
Eple) = E,(e)
and
aEZI(T> _ aEzl’I(r>
11 Tor . 11T " or -

Combining these boundary conditions with the expressions for EZ given
in Egs. A.20, A.21 and A.23 yields the following dispersion equation,

in which only the mode without ®-variations (n = 0) is considered:
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Ky bJ (T c)
IITPJSTE%C)

F[Jl(Tpc)Nl(pr) - Nl(Tpc)Jl(pr)][Io(ka)KO(kb) - Ko(ka)IO(kb)] ]
) - —E;;T; [Jl(Tpc N (T b) - Nl(Tpc)Jo(pr)][Io(ka)Kl(kb) + Ko(ka)Il(kb)]

[JO(Tpc)Nl(pr) - NO(TPC)Jl(pr)][Io(ka)Ko(kb) - Ko(ka)IO(kb)]

L- EE;E—;-[J (T c)N_ (T b) - NO(Tpc)JO(pr)][Io(ka)Kl(kb) + Ko(ka)Il(kb)i

(A.24)

Equation A.24 is the desired dispersion equation. It must be solved by

means of a digital computer. It yields the phase constant and the small-

signal growth or attenuation constant of the beam-plasma system as a

function of frequency. The fact that the arguments of the Bessel functions

are complex complicates the solution greatly. Even 1f the collision

frequency can be neglected the solution is not appreciably simplified.
Simpson®® has obtained solutions to Eq. A.24 for the case of a

beam and plasma completely or partially filling a metallic pipe so

that Regions I and II of Fig. A.l1 coincide and Region III is not

present. This model is appropriate to a beam-generated plasma.

Solutions to a case closely approximating the experimental conditions

of Chapter VI are shown in Fig. A.2. The imaginary parts of k are seen

to be negative and thus represent the small-signal gain due to the

beam-plasma interaction.
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APPENDIX B. DERIVATION OF THE DIELECTRIC TENSOR FOR A PLASMA

Consider a stationary, homogeneous, neutral and cold plasma
column. The ions are assumed to form an immobile background. A static
magnetic field §>= Bz is applied along the z-direction, which coincides
with the column axis. Nonrelativistic mechanics is assumed to apply so
that the ac magnetic field may be neglected. The electron equation of
motion, including a viscous damping term, is given by

-

d‘%
s —mw -e(B+VxB) , (B.1)

" at
where the parameter v is the collision frequency for momentum transfer.
The quantity -mv?érepresents the time rate of change of momentum,
and hence, the statistical average force exerted on an electron by
the massive ilon-neutral component of the plasma. This form of damping
term 1s strictly correct only when the collision frequency is

independent of electron velocity. ZEquation B.1 1s now written as

érer(?-V)?nLv? = -nE +vxB) . (8.2)

Taking the ac components of Eq. B.2 and assuming an exp[j(wt-kz)]

variation of the ac quantities one obtains

B )

-

. - -

Jov + 0 + vv = -n(E +V x
1 1 1 1 o

Expanding the right-hand side, the following component equations are

obtained in cylindrical coordinates:

2l -
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(G + V>VI‘ = -1E, - nchBz s
(Go + V)v, = -1, + B,
and
(Jo +v)v, = -nE

From these equations the following expressions for the velocity

components are obtained:

o o Vs
z jo +v 7

(jo + v)ECP +w E

ey
Vo = -
(3w + v)® + wi
and
.o (Jw + V)Er - wCEcp
r 2

(joo + V)2 + @]
The equation of continuity is given by

v-?+g—§: 0

But

JEEN
A%

._)
J = p

(B.

(B.

(B.

(B.

(B.

k)

.5)

6)

)

&)

-9)

Since there is no dc drift velocity and neglecting second-order terms,

the continuity equation may now be written as

Vo (o) +wo = O

or




R
O
pl = v jwl
But
v.F = p , (B.10)
1 A

where P is the ac volume polarization and p 1s the volume charge
1 1

density. Thus

LT e (B.11)

Equation B.1l may now be expanded in terms of Egs. B.6 through

B.8. Thus
+ - S + +
5 e, <(J<D V)E, (DCCPQJF(JCD V)E, + 0B E, /\>
= - - =
* Jo (3o + V)= + wi (Go + V)% + o Jo TV
Since
ep
2 - o
D me

it follows that

o .

ﬁ (D a) 4 \(D L4 /\

P = -€ £ r
1 0\ O 2 2

. & - 22 . (B.12)
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Recall that the electric displacement vector, 51 is given by85
= - =
D = ¢FE +P . (B.13)

Note that 59represents only a partial field due to the true charges in the

85 The flux arising from the polarization charges gives rise to the

plasma.
ﬁ

polarization field P. The polarization is proportional to the field,

but the medium under consideration here does not polarize isotropically.

Hence the proportionality "constant" between P and E, known as the

electric susceptibility, §i is a tensor. Thus

3
P = e, X E . (B.1h4)
Then
<«
j_j) = EO(]_ + X)E—)
and so
D = €, KE = €F , (B.15)

© ., o . . ©
where k 1s the specific inductive capacity tensor and € is the

. . . e <, . . .
dielectric tensor. A common definition of k" in this connection is the

following:86
Kl JKX 0]
s .
O R 0 . (B.16)
0 K'.”
Since
7 = e—:o(f?— nNE ,

it follows that the ac polarization may be written as
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= . _ A e _ _ N
Pl = eo-{ [KLET + JRXECP 1] r + [KLE@ Janr IJ @ + [K”EZ lJ Z }'.
(B.17)

Comparing Egs. B.12 and B.17 it is apparent that the specific inductive

capacity tensor components are given by

joID

ko= 1 v . N - (B.18a)
<1*J<3> (UT>
w 2 w
_E> (__C_
(&) (&)
kK. = - . = (B.18b)
.V C
(-33) (&)
and o 2
(&)
\(D
Ky = 1 - ———— . (B.18c)
1-3’2’;

If the collision frequency is low enough to be negligible, which

is the case for many plasmas to be encountered, Egs. B.18 reduce to

2
w
Kk, = 1 - —2 (B.19a)
1 2 2
w - W
C
wC
(3)e
L@ P
6 = o= (B.19b)
x o - f

and

» 2
! -(—P-> . (B.19¢)




APPENDIX C. DERIVATION OF THE SPACE-CHARGE FIELD EXPRESSTIONS

In a Lagrangian analysis it is necessary to calculate the
Coulomb Tforces between electrons or charge groups. The more elegant
approach of deriving expressions for the potential and the fields from
a continuous charge distribution does not lend itself very well to
this type of analysis. The general approach here 1s to solve Poisson's
equation for the electron stream by the Green's function method or by
expanding the beam space-charge density in a Fourier series (harmonic
method). One- and two-dimensional formulations will be carried out
along the lines developed by Rowe.*® In both analyses 1t will be
assumed that relativistic effects are negligible due to the fact that
the electron velocities are much less than the speed of light. Hence
the formulas of electrostatics can be used. It is also assumed that
a sufficient quantity of positive ions is present to neutralize the
average space charge.

Consider the one-dimensional case first. The electron stream
space-charge density is expanded in a Fourier time series with a

particular spatial distribution assumed.

[s.¢]
- Jnwt
p(2,8) = ) p(5,6)e70 (c.1)
- n
n=1
For this reason the method is called the harmonic method of calculating
the space-charge field. Assume that the RF wave impressed on the beam-

plasma system bunches the electron stream such that the space-charge

-2h6-
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density 1s constant in amplitude and varies sinuscidally with distance.
If the plasma is replaced with a drift tube, as shown in Fig. C.1, the
steady-state space-charge potential for this distribution may be

calculated. The space-charge density is assumed to have the form

p(z) = p P (c.2)

The harmonics of the charge distribution are given by

38 (z-2")

o (z,2%) = o e ,

from which the axial electric field due to each harmonic may be
determined. The Bn is the propagation constant for the nth harmonic
propagating along the plasma column in the absence of the electron
stream.

For the model under consideration Maxwell's equations reduce to

the electrostatic equations

VxE = O R (C.B)

E = vV . (c.h)

e, (2) -iB_z
V) = - = ap e T (c.5)

applies, while in the region outside of the beam Laplace's equation

applies. The solution to Egq. C.5 is given by
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-JB_z Ap -Jp z
n O n
Vhsc(r) e = ;;—-+ BIO(Bnr)> e , (c.6)

n

where Io(ﬁnr) is the zero-order modified Bessel function of the first
kind. The function of the second kind does not appear so that the
solution is bounded at r = 0. By differentiation of Eq. C.6 the
electric field may be found as follows:

E
nsc-z

Apo —jan
(r;z) = 3B, (éz_ + Blo(ﬁnr)> e . (c.7)
n

At the beam boundary (r = b') the following boundary conditions apply:

il

Bi(b') = EN(b")

and

i, ii,
B (b)) = e

while at the drift tube wall, r = b,

The solution to the eigenvalue problem defined by the field expressions
for Regions i and ii and by the above boundary conditions yields a

solution of the form

Jp A I (r)
EHSC—Z(I‘}Z> = Bn [l - Bnb IOZBan 11<Bnb )Ko(Bnb)

-iB z
+ Io(anb)xl(snb')Dq e T . (c.8)
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Along the axis of Fig. C.1, Eqg. C.8 may be written as

Jo A -3B 2
O n
R e ) (c.9)

Ensc-z T B

n

where the plasma frequency reduction factor, Rn’ is defined by

B b .
2 é n 1 1
RZ = 1 - TSTE;ET' Il(ﬁnb )KO(Bnb) + IO(Bnb)Kl(Bnb i) . (c.10)

Note that Rn is a purely geometric factor and has been calculated for

various geometries.73 The radian plasma frequency for the electron
beam 1s given by
yle nl
o A 0
a§ = - = T (c.11)
o} W' e
oo

where Io is the beam current and U, is the dc electron velocity. 1In

view of Egs. C.5 and C.11 it is possible to write Eq. C.9 as

. zZ
oy e
Fgeez = B —o R
nse= n w2 e U
or
J Yo b
- 4 2
Ensc—z - Bn pn(z) nIO Rn

If the effective radian plasma frequency, qu, is defined by

A
“in = a§R§ s (c.12)

one obtains

= o () =2 (c.13)
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Under small-signal conditions,

T
B, = o (C.14)
on

where vOrl is the unperturbed phase velocity for the nth harmonic. It
is assumed that Eq. C.1h4 is approximately correct even for large-signal

operation. Thus Eq. C.13% may be written as

2 wu v j@
E _ qn o on n
nsc-z nI 1 ?

where @n is the instantaneous phase of the nth harmonic of the RF wave

causing the bunching, as defined in Eq. 3.22. Thus the space-charge

field at the nth harmonic may be written as

P - o(a) o -3l +(¢r/z)]( qn> ( n§vzn> . (c15)

If the space-charge density is expanded in a Fourier series in

@n as in Chapter III, Eq. C.15 becomes

IO v oy -J{® +(n/2)]
EHSC-—Z = - u_ . On> y ( > :

(}r_L f - d®él>. (C.16)

~ 1
5 1+ 2clu(yl,q>ol)

This expansion in a Fourier series in space is valid provided there is
little change in amplitude of the waves over the few adjacent RF cycles
and provided the influence of the space charge extends no more than a

few cycles in either direction.
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Since the integrand in Eq. C.16 is uniformly convergent, the

order of integration and summation may be reversed. Thus

o 2L, o .
Zwvon @ Si —J[®n'®é+(ﬁ/2>]
M ® /.

2nnL

E
nsc-z

0 =1

=

sloly
01

+ 2 '
1 Clu(y1’®01)

Since a sinusoidal variation of the space-charge density was postulated,

the real part of the right-hand side is taken. This yields

N

2 514N

aoe'!
E o (% [ z Tn_ sin(o_ - 0') =
nsc-z n W N 2m n n
0

1
o 1+ 2Clu(yl,®01)

Defining the one-dimensional space-charge weighting function by

2 si (q> -@*)R
e - 2l) Z — : (c.17)

the space-charge field term for the nth harmonic becomes

Bscz =~ on <:wb:> b/\ oo u(y ;?®§l . (c.18)

For the two-dimensional analysis of Chapter IV it is necessary

to find the two-dimensional space-charge field weighting functions.
It is assumed that angular spreading of the electron stream can be
neglected. For the cylindrical symmetry shown in Fig. C.2 the Green's

function for a delta-function ring of charge in an infinite-conductivity
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FIG. C.2 RINGS OF CHARGE IN AN ELECTRON STREAM FLOWING THROUGH A

DRIFT TUBE.
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drift tube of radius b may therefore be used. If the stream of radius
b' is divided into a number of concentric annular rings of charge, two-
dimensional space-charge effects resulting in radial motion can be
studied.

Let G be the potential due to a charged ring located at r' and
7' with the thickness dr' and dz'. Except at an actual charge point of

the ring, G satisfles the Laplace equation

3¢ d 9
vo - .1 $<TE§> _ o . (c.19)

dz2

The boundary conditions are that the potential due to the ring of
charge be zero at the drift tube and go to zero at z far from z'.

Thus
G(b) = 0

and
G(lz] ») = 0

Solution of Eq. C.19 gives the Green's function®”

= -HZIZ_Z"
G(r,z) = Sj A, e Jo(uﬂr) 5 (c.20)
£=1
where Ml is chosen so that
J(up) = 0 . (c.21)

The surface charge density of the ring is

Py = 2xc'p' dr' dz' B(r - r') , (c.22)
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where 8(r - r') is the Dirac delta function defined by

b
2x d[‘ 5(r - rY)rdr = 1 . (c.23)
0
At the plane z = z', where the charge ring is located, the discontinulty
of BG/BZ is equal to —1/€O multiplied by the surface charge density of
the ring. Thus
p Doyt
(‘gg = - Ei = -ZEPL grt gzt 3(r ~r') , (c.2h)

' €
Z2=2Z O o

and from Eg. C.20,

€
o}

}: b r) = 2xr'p' dr' dz' &(r - r') . (c.25)

Due to the orthogonality properties of Bessel functions,A}Z may be
determined by multiplying the left-hand side of Eq. C.25 by rJO(uSr)

and integrating between r = 0 and r = b. All terms vanish except

b
A Of r[JO(uSr)]Z dr. Note that
b
[ 2 b2 2 6
§ r[JO(usr)] dr = 3= [T (k. Db)] (c.26)
0
Thus
o b
E: ‘jp Ap,J (u,r)J (4 r)radr
= [bJ (H b)]g 5 L0 4 o''s
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In view of Gauss' theorem and from Eq. C.25 this becomes

b
2 t At
A = u/\ J (pr)r dr L gﬂz—g—-dr' dz' &(r - r'")
s u_ [bJ (k b)]® °F 2 ‘o
s -1 S 0
or
H 1
A, = L Jo(usr') r€p dr' dz'
u_[bJ (u_b)]? o
S 1 S
It then follows that
- 1 e 1 1
A, = Jo(uzr ) 2, dr' dz' . (c.27)

uz[le(ulb)]Z

Substituting Egq. C.27 into Eq. C.20 yields

ii p'r'I (n,r')J (k,r) e—uglz—Z'l (6.28)

n=1 bZ[Jl<“£b)J2

The space-charge potential may thus be written as

VSC i /“/‘ p'r' dr' dz’ }z ( r')J (uzr) -ullz -z |

e
/ 2 2
€.b Hg[J (k,b)]

oot

£=1

Since by conservation of charge
1 1 1 1 — 1 1 1 H
p'r' dr' dz = pT, dro dzO 5

where the zero subscripts denote quantities at the entrance to the

interaction region and




e u
o}

where IO is the dc beam current and U is the dc velocity of the

beam electrons, the space-charge potential may be written as

1 1 1 ® 1 - ot
. o /~/~ Il dr! dz! Z{: Jo(plr )Jo(uzr) . uE[z z']
sc N

12,2 2
u b b - ul[Jl(uzb)]

(C.29)

The space-charge field expressions are found by appropriate
differentiation of Egq. C.29. Making use of the normalized variables,
one obtains

X

t2
v bh e o2ir gor 3 Ly |y -y
sc 1 0o o1 Sﬁ £791 Y1 '
B = -7y = - J[ JF - € sgn(y -y*)
nsc-y z e x2x2 o 171
0 o0 0™ b =1

Jo(vﬂx')Jo(vzx)

x! dx! (c.30)
2 O O
[ (vyx)]
and
X 1
oV o' E2rl o231 go = v,y -yt
B _ asc - 1 Xﬁ e 24 v
nsc-x r J u 2 2.2 O
o o UERr g
J (v,x')J (v, x)
oL . gﬂ x! ax! (c.31)
[Jl(vgxb>1
where
. B Hlo
I Cw
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LIST OF SYMBOLS

Vector potential.

Normalized circuilt voltage amplitude of the nth
harmonic.

Normalized input signal level relative to C IOVO.
1

Inner radius of the metallic drift tube surrounding
beam and plasma.

Space-charge force range parameter.

Magnetic field strength.

Ratio of Bessel functions, defined by Eq. 2.55.
Static axial magnetic field.

Brillouin magnetic field, defined by Eq. 5.1.
Axial magnetic field at the electron beam cathode.

Inner radius of the dilelectric tube containing
the plasma column.

Radius of electron beam.

Injection velocity parameter of the fundamental
signal.

Injection velocity parameter, (uo - Von)/CnVon'

Complex capacitance of the equivalent transmission
line for the nth harmonic.

Capacitance of the equivalent transmission line for
the collisionless case.

Beam-circuit coupling parameter, or gain parameter,
defined by Eg. 3.7.

Gain parameter for the nth harmonic.

Radius of the region containing a beam and plasma,
used in Appendix A.
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Electric displacement vector.

Ac component of the electric displacement vector.
Loss parameter for the nth harmonic.

Electric field strength.

Longitudinal space-charge field for the nth
harmonic.

Absolute value of the charge of an electron.
One-dimensional space-charge weighting function.

Two-dimensional radial space-charge weighting
function.

Two-dimensional longitudinal space-charge weighting
function.

Signal frequency in Hz.

Lower frequency signal in two-signal operation.
Upper frequency signal in two-signal operation.
Beam plasma frequency.

Harmonic signal generated in the beam-plasma system.
Plasma -plasma frequency.

Signal frequency.

Green's function.

Combination of nth-order Bessel functions.
Magnetic field intensity.

Dc beam current, a positive quantity.

Injected dc beam current, a positive gquantity.
Electron beam current density.

Modified Bessel function of the first kind and
nth order.
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Convection current in the plasma column.
Displacement current in the plasma column.
RF current of the nth harmonic.

Convection current in the electron beam, a
positive quantity.

Current density.

Bessel function of the first kind and nth order.
Convection current density in the plasma column.
Charge group label.

Magnetic field factor, defined by Eq. 4.61.

Modified Bessel function of the second kind
and nth order.

Boltzmann constant, 1.380-10 22 J/°K.

Complex propagation constant.

Propagation constant of free space.

Complex propagation constant for the nth harmonic.
Distance.

Integer used in the Fourler series coefficient
integrals.

Complex inductance of the equivalent transmission
line for the nth harmonic.

Inductance of the equivalent transmission line for
the collisionless case.

Mass of a particle.
Major axis of an elllpse.
Minor axis of an ellipse.

Number of particles in a Debye sphere.
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Bessel function of the second kind and nth order.

Number of stream wavelengths of the fundamental
signal.

Particle density.

Angular mode number of the field quantities in the
plasma.

Harmonic number.

Electron density in the plasma column.

Pressure in Torr.

Volume polarization.

Ac volume polarization.

Electric charge of a particle.

Charge giving rise to the convection current iz.

Plasma frequency reduction factor for the nth
harmonic.

Radial coordinate.

Load radius of a radial transmission line.
Input radius of & radial transmission line.
Temperature.

Period over which the circuit equations are
integrated.

Radial propagation constant in the region containing
a beam and plasma.

Electron temperature.

Radial propagation constant in a plasma column for
the nth harmonic.

Time

Normalized velocity variable.
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Dc beam velocity.

Longitudinal velocity.

"Circuit" voltage at the plasma edge.
Scalar potential.

Beamrvoltage.

Circuit voltage for the nth harmonic.
Space-charge potential.

Velocity.

Average electron velocity in the plasma.

Phase velocity of the nth harmonic along the
"eircuit."

RF velocity.

Normalized radial position variable, defined by
Eq. L.2.

Normalized axial distance variable, defined by

Eq. 3.6.
Characteristic impedance of a radial waveguide.

Complex characteristic impedance of the equivalent
transmission line, defined by Eq. 3.18.

Imaginary part of the complex interaction impedance.
Real part of the complex interaction impedance.

Load impedance of a radial waveguide.

Characteristic impedance of a coaxial line.

Input impedance of a radial waveguide.

Longitudinal coordinate.

Attenuation constant.

Radial charge density variation parameter in a
plasma column.
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Attenuation constant in a plasma for the nth
harmonic.

Bunch injection phase angle for the nth harmonic.
Phase constant.

Stream phase constant.

Phase constant in a plasma for the nth harmonic.
Radlal propagation constant.

Dirac delta function.

Permittivity of a plasma, a tensor.

Permittivity of free space, 8.854-107%% F/m.

Radial component of the tensor permittivity in a
plasma.

Longitudinal component of the tensor permittivity
in a plasma.

Characteristic impedance of free space, (uo/eo)l/2 =

317 Q.

Imaginary part of the normalized interaction
impedance for the nth harmonic.

Real part of the normalized interaction impedance
for the nth harmeonic.

Absolute value of the charge-to-mass ratio of an
electron.

Phase angle for a radial transmission line, defined
by Eq. 7.9.

Phase shift of the actual nth harmonic signal traveling
along the "circuit'" with respect to a hypothetical

wave traveling at the beam velocity.

Radial phase shift variable.

Specific inductive capacity tensor.

Specific inductive capacity of the cylinder
surrounding the plasma column.
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Components of the specific inductive capacity
tensor, defined in Eq. B.16.

Mean-free-path of gas particles.

Debye length.

Mean-free-path of the plasma electrons.

Stream wavelength.

Permeability of free space, 4x/10" H/m.
Arguments that define zeros of Bessel functions.
Plasma collision frequency in rad/s.

Collision frequency between beam electrons and
plasma particles in rad/s.

Normalized Bessel function argument.
Charge density.

Dc charge density.

Ac charge density.

Charge density due to q,-

Linear charge density.

Entry phase of the fundamental RF component, defined
by Eq. 3.8.

Phase of the nth harmonic component relative to the
phase at the entrance to the interaction region.

Phase position of a charge group that influences
the charge group at & , used in the space-charge
field weighting functions.

Azimuthal coordinate.

Electric susceptibility tensor.

Phase angle for a radial transmission line, defined
by Eq. 7.10.

Weighting function proportional to the radial variation
of the longitudinal electric field across the plasma
column.
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Signal freguency in rad/s.
Beam plasma frequency.
FElectron cyclotron freguency.
Ion cyclotron frequency.
Plasma-plasma frequency.
Plasma frequency at the plasma column edge.
Maximum plasma frequency in the plasma column.

Reduced plasma frequency of the beam electrons
for the nth harmonic.

Signal frequency.

Frequency in the forward-wave branch of the
w-B diagram where B — o,
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